添加异常装饰器

This commit is contained in:
liurui 2024-12-18 17:49:23 +08:00
parent 34c4a9e205
commit 9de1b4a857
4 changed files with 78 additions and 32 deletions

View File

@ -223,7 +223,7 @@ table_name = 'v_tbl_crude_oil_warning'
### 开关 ### 开关
is_train = False # 是否训练 is_train = True # 是否训练
is_debug = False # 是否调试 is_debug = False # 是否调试
is_eta = False # 是否使用eta接口 is_eta = False # 是否使用eta接口
is_timefurture = True # 是否使用时间特征 is_timefurture = True # 是否使用时间特征

View File

@ -512,5 +512,18 @@ class MySQLDB:
self.connection.close() self.connection.close()
logging.info("Database connection closed.") logging.info("Database connection closed.")
def exception_logger(func):
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except Exception as e:
# 记录异常日志
logging.error(f"An error occurred in function {func.__name__}: {str(e)}")
# 可以选择重新抛出异常,或者在这里处理异常
raise e # 重新抛出异常
return wrapper
if __name__ == '__main__': if __name__ == '__main__':
print('This is a tool, not a script.') print('This is a tool, not a script.')

View File

@ -1,6 +1,6 @@
# 读取配置 # 读取配置
from lib.dataread import * from lib.dataread import *
from lib.tools import SendMail from lib.tools import SendMail,exception_logger
from models.nerulforcastmodels import ex_Model,model_losss,model_losss_juxiting,brent_export_pdf,tansuanli_export_pdf,pp_export_pdf,model_losss_juxiting from models.nerulforcastmodels import ex_Model,model_losss,model_losss_juxiting,brent_export_pdf,tansuanli_export_pdf,pp_export_pdf,model_losss_juxiting
import glob import glob
@ -206,14 +206,14 @@ def predict_main(end_time):
logger.info('训练数据绘图end') logger.info('训练数据绘图end')
# 模型报告 # 模型报告
logger.info('制作报告ing') # logger.info('制作报告ing')
title = f'{settings}--{now}-预测报告' # 报告标题 # title = f'{settings}--{now}-预测报告' # 报告标题
brent_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,time=end_time, # brent_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,time=end_time,
reportname=reportname,sqlitedb=sqlitedb), # reportname=reportname,sqlitedb=sqlitedb),
logger.info('制作报告end') # logger.info('制作报告end')
logger.info('模型训练完成') # logger.info('模型训练完成')
# # LSTM 单变量模型 # # LSTM 单变量模型
# ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset) # ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset)
@ -234,12 +234,12 @@ def predict_main(end_time):
file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime), file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime),
ssl=ssl, ssl=ssl,
) )
m.send_mail() # m.send_mail()
if __name__ == '__main__': if __name__ == '__main__':
# 遍历2024-11-25 到 2024-12-3 之间的工作日日期 # 遍历2024-11-25 到 2024-12-3 之间的工作日日期
for i_time in pd.date_range('2024-11-22', '2024-12-16', freq='B'): for i_time in pd.date_range('2024-12-02', '2024-12-16', freq='B'):
end_time = i_time.strftime('%Y-%m-%d') end_time = i_time.strftime('%Y-%m-%d')
# print(e_time) # print(e_time)
predict_main(end_time) predict_main(end_time)

View File

@ -6,7 +6,7 @@ import seaborn as sns
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import matplotlib.dates as mdates import matplotlib.dates as mdates
import datetime import datetime
from lib.tools import Graphs,mse,rmse,mae from lib.tools import Graphs,mse,rmse,mae,exception_logger
from lib.dataread import * from lib.dataread import *
from neuralforecast import NeuralForecast from neuralforecast import NeuralForecast
from neuralforecast.models import NHITS,Informer, NBEATSx,LSTM,PatchTST, iTransformer, TSMixer from neuralforecast.models import NHITS,Informer, NBEATSx,LSTM,PatchTST, iTransformer, TSMixer
@ -36,7 +36,7 @@ from reportlab.lib.units import cm # 单位cm
pdfmetrics.registerFont(TTFont('SimSun', 'SimSun.ttf')) pdfmetrics.registerFont(TTFont('SimSun', 'SimSun.ttf'))
@exception_logger
def ex_Model(df,horizon,input_size,train_steps,val_check_steps,early_stop_patience_steps, def ex_Model(df,horizon,input_size,train_steps,val_check_steps,early_stop_patience_steps,
is_debug,dataset,is_train,is_fivemodels,val_size,test_size,settings,now, is_debug,dataset,is_train,is_fivemodels,val_size,test_size,settings,now,
etadata,modelsindex,data,is_eta): etadata,modelsindex,data,is_eta):
@ -222,6 +222,7 @@ def ex_Model(df,horizon,input_size,train_steps,val_check_steps,early_stop_patien
# 原油计算预测评估指数 # 原油计算预测评估指数
@exception_logger
def model_losss(sqlitedb,end_time): def model_losss(sqlitedb,end_time):
global dataset global dataset
global rote global rote
@ -411,7 +412,15 @@ def model_losss(sqlitedb,end_time):
df_predict2['id'] = range(1, 1 + len(df_predict2)) df_predict2['id'] = range(1, 1 + len(df_predict2))
# df_predict2['CREAT_DATE'] = now if end_time == '' else end_time # df_predict2['CREAT_DATE'] = now if end_time == '' else end_time
df_predict2['CREAT_DATE'] = end_time df_predict2['CREAT_DATE'] = end_time
df_predict2.to_sql("accuracy", con=sqlitedb.connection, if_exists='append', index=False) def get_common_columns(df1, df2):
# 获取两个DataFrame的公共列名
return list(set(df1.columns).intersection(df2.columns))
common_columns = get_common_columns(df_predict2, existing_data)
try:
df_predict2[common_columns].to_sql("accuracy", con=sqlitedb.connection, if_exists='append', index=False)
except:
df_predict2.to_sql("accuracy", con=sqlitedb.connection, if_exists='append', index=False)
# 更新accuracy表中的y值 # 更新accuracy表中的y值
update_y = sqlitedb.select_data(table_name = "accuracy",where_condition='y is null') update_y = sqlitedb.select_data(table_name = "accuracy",where_condition='y is null')
@ -425,15 +434,21 @@ def model_losss(sqlitedb,end_time):
logger.error(f'更新accuracy表中的y值失败row={row}') logger.error(f'更新accuracy表中的y值失败row={row}')
# 上周准确率计算 # 上周准确率计算
predict_y = sqlitedb.select_data(table_name = "accuracy") predict_y = sqlitedb.select_data(table_name = "accuracy")
ids = predict_y[predict_y['min_price'].isnull()]['id'].tolist() # ids = predict_y[predict_y['min_price'].isnull()]['id'].tolist()
# 模型评估前五最大最小 ids = predict_y['id'].tolist()
# 准确率基准与绘图上下界逻辑一致
# predict_y[['min_price','max_price']] = predict_y[['min_within_quantile','max_within_quantile']] # predict_y[['min_price','max_price']] = predict_y[['min_within_quantile','max_within_quantile']]
# 模型评估前五均值 df_combined3['mean'] = df_combined3[modelnames].mean(axis=1) # 模型评估前五均值
# predict_y['min_price'] = predict_y[modelnames].mean(axis=1) -1 # predict_y['min_price'] = predict_y[modelnames].mean(axis=1) -1
# predict_y['max_price'] = predict_y[modelnames].mean(axis=1) +1 # predict_y['max_price'] = predict_y[modelnames].mean(axis=1) +1
# 模型评估前十均值 # 模型评估前十均值
predict_y['min_price'] = predict_y[allmodelnames[0:5]].min(axis=1) # predict_y['min_price'] = predict_y[allmodelnames[0:10]].mean(axis=1) -1
predict_y['max_price'] = predict_y[allmodelnames[0:5]].max(axis=1) # predict_y['max_price'] = predict_y[allmodelnames[0:10]].mean(axis=1) +1
# 模型评估前十最大最小
# allmodelnames 和 predict_y 列 重复的
allmodelnames = [col for col in allmodelnames if col in predict_y.columns]
predict_y['min_price'] = predict_y[allmodelnames[0:10]].min(axis=1)
predict_y['max_price'] = predict_y[allmodelnames[0:10]].max(axis=1)
for id in ids: for id in ids:
row = predict_y[predict_y['id'] == id] row = predict_y[predict_y['id'] == id]
try: try:
@ -448,25 +463,37 @@ def model_losss(sqlitedb,end_time):
df = pd.merge(predict_y,df2,on=['ds'],how='left') df = pd.merge(predict_y,df2,on=['ds'],how='left')
df['ds'] = pd.to_datetime(df['ds']) df['ds'] = pd.to_datetime(df['ds'])
df = df.reindex() df = df.reindex()
# 判断预测值在不在布伦特最高最低价范围内准确率为1否则为0
def is_within_range(row):
for model in allmodelnames:
if row['LOW_PRICE'] <= row[col] <= row['HIGH_PRICE']:
return 1
else:
return 0
# 比较真实最高最低,和预测最高最低 计算准确率
def calculate_accuracy(row): def calculate_accuracy(row):
# 子集情况: # 子集情况:
if (row['HIGH_PRICE'] >= row['max_price'] and row['min_price'] >= row['LOW_PRICE']) or \ if (row['max_price'] >= row['HIGH_PRICE'] and row['min_price'] <= row['LOW_PRICE']) or \
(row['LOW_PRICE'] >= row['min_price'] and row['max_price'] >= row['HIGH_PRICE']): (row['max_price'] <= row['HIGH_PRICE'] and row['min_price'] >= row['LOW_PRICE']):
return 1 return 1
# 无交集情况:
if row['max_price'] < row['LOW_PRICE'] or \
row['min_price'] > row['HIGH_PRICE']:
return 0
# 有交集情况: # 有交集情况:
if row['HIGH_PRICE'] > row['min_price'] or \ else:
row['max_price'] > row['LOW_PRICE']:
sorted_prices = sorted([row['LOW_PRICE'], row['min_price'], row['max_price'], row['HIGH_PRICE']]) sorted_prices = sorted([row['LOW_PRICE'], row['min_price'], row['max_price'], row['HIGH_PRICE']])
middle_diff = sorted_prices[2] - sorted_prices[1] middle_diff = sorted_prices[2] - sorted_prices[1]
price_range = row['HIGH_PRICE'] - row['LOW_PRICE'] price_range = row['HIGH_PRICE'] - row['LOW_PRICE']
accuracy = middle_diff / price_range accuracy = middle_diff / price_range
return accuracy return accuracy
# 无交集情况:
else:
return 0
columns = ['HIGH_PRICE','LOW_PRICE','min_price','max_price'] columns = ['HIGH_PRICE','LOW_PRICE','min_price','max_price']
df[columns] = df[columns].astype(float) df[columns] = df[columns].astype(float)
df['ACCURACY'] = df.apply(calculate_accuracy, axis=1) df['ACCURACY'] = df.apply(calculate_accuracy, axis=1)
# df['ACCURACY'] = df.apply(is_within_range, axis=1)
# 取结束日期上一周的日期 # 取结束日期上一周的日期
endtime = end_time endtime = end_time
endtimeweek = datetime.datetime.strptime(endtime, '%Y-%m-%d') endtimeweek = datetime.datetime.strptime(endtime, '%Y-%m-%d')
@ -477,12 +504,15 @@ def model_losss(sqlitedb,end_time):
df3 = df.copy() df3 = df.copy()
df3 = df3[df3['CREAT_DATE'].isin(up_week_dates)] df3 = df3[df3['CREAT_DATE'].isin(up_week_dates)]
df3 = df3[df3['ds'].isin(up_week_dates)] df3 = df3[df3['ds'].isin(up_week_dates)]
# df3.to_csv(os.path.join(dataset,f'accuracy_{endtime}.csv'),index=False)
total = len(df3) total = len(df3)
accuracy_rote = 0 accuracy_rote = 0
# 设置权重字典
weight_dict = [0.4,0.15,0.1,0.1,0.25]
for i,group in df3.groupby('ds'): for i,group in df3.groupby('ds'):
print('权重:',round(len(group)/total,2)) print('权重:',weight_dict[len(group)-1])
print('准确率:',group['ACCURACY'].sum()/(len(group)/total)) print('准确率:',(group['ACCURACY'].sum()/len(group))*weight_dict[len(group)-1])
accuracy_rote += group['ACCURACY'].sum()/(len(group)/total) accuracy_rote += (group['ACCURACY'].sum()/len(group))*weight_dict[len(group)-1]
df4 = pd.DataFrame(columns=['开始日期','结束日期','准确率']) df4 = pd.DataFrame(columns=['开始日期','结束日期','准确率'])
df4.loc[len(df4)] = {'开始日期':up_week_dates[0],'结束日期':up_week_dates[-1],'准确率':accuracy_rote} df4.loc[len(df4)] = {'开始日期':up_week_dates[0],'结束日期':up_week_dates[-1],'准确率':accuracy_rote}
print(df4) print(df4)
@ -598,6 +628,7 @@ def model_losss(sqlitedb,end_time):
# 聚烯烃计算预测评估指数 # 聚烯烃计算预测评估指数
@exception_logger
def model_losss_juxiting(sqlitedb): def model_losss_juxiting(sqlitedb):
global dataset global dataset
global rote global rote
@ -857,7 +888,7 @@ def model_losss_juxiting(sqlitedb):
import matplotlib.dates as mdates import matplotlib.dates as mdates
@exception_logger
def brent_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inputsize=5,dataset='dataset',time = '2024-07-30',reportname='report.pdf',sqlitedb='jbsh_yuanyou.db'): def brent_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inputsize=5,dataset='dataset',time = '2024-07-30',reportname='report.pdf',sqlitedb='jbsh_yuanyou.db'):
global y global y
# 创建内容对应的空列表 # 创建内容对应的空列表
@ -1138,6 +1169,7 @@ def brent_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inpu
except TimeoutError as e: except TimeoutError as e:
print(f"请求超时: {e}") print(f"请求超时: {e}")
@exception_logger
def pp_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inputsize=5,dataset='dataset',time = '2024-07-30',reportname='report.pdf',sqlitedb='jbsh_yuanyou.db'): def pp_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inputsize=5,dataset='dataset',time = '2024-07-30',reportname='report.pdf',sqlitedb='jbsh_yuanyou.db'):
global y global y
# 创建内容对应的空列表 # 创建内容对应的空列表
@ -1749,6 +1781,7 @@ def pp_export_pdf_v1(num_indicators=475,num_models=21, num_dayindicator=202,inpu
except TimeoutError as e: except TimeoutError as e:
print(f"请求超时: {e}") print(f"请求超时: {e}")
@exception_logger
def tansuanli_export_pdf(num_indicators=475,num_models=22, num_dayindicator=202,inputsize=5,dataset='dataset',y='电碳价格',end_time='2024-07-30',reportname='tansuanli.pdf'): def tansuanli_export_pdf(num_indicators=475,num_models=22, num_dayindicator=202,inputsize=5,dataset='dataset',y='电碳价格',end_time='2024-07-30',reportname='tansuanli.pdf'):
# 创建内容对应的空列表 # 创建内容对应的空列表
content = list() content = list()