分类指标相关性及气泡图

This commit is contained in:
workpc 2024-11-05 14:30:43 +08:00
parent fe96c5f1be
commit a68ed336de
5 changed files with 2965 additions and 296 deletions

View File

@ -167,12 +167,12 @@ upload_data = {
### 开关
is_train = True # 是否训练
is_debug = False # 是否调试
is_eta = True # 是否使用eta接口
is_debug = True # 是否调试
is_eta = False # 是否使用eta接口
is_timefurture = True # 是否使用时间特征
is_fivemodels = False # 是否使用之前保存的最佳的5个模型
is_edbcode = False # 特征使用edbcoding列表中的
is_edbnamelist = False # 自定义特征对应上面的edbnamelist
is_fivemodels = True # 是否使用之前保存的最佳的5个模型
is_edbcode = True # 特征使用edbcoding列表中的
is_edbnamelist = True # 自定义特征对应上面的edbnamelist
is_update_eta = False # 预测结果上传到eta
is_update_report = False # 是否上传报告

2611
debugdemo.ipynb Normal file

File diff suppressed because it is too large Load Diff

View File

@ -20,8 +20,8 @@ plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
from datetime import timedelta
# from config_jingbo import *
from config_juxiting import *
from config_jingbo import *
# from config_juxiting import *
from sklearn import metrics
from reportlab.pdfbase import pdfmetrics # 注册字体
from reportlab.pdfbase.ttfonts import TTFont # 字体类

View File

@ -1,7 +1,7 @@
# 读取配置
# from config_jingbo import *
from config_jingbo import *
# from config_tansuanli import *
from config_juxiting import *
# from config_juxiting import *
from lib.dataread import *
from lib.tools import *
from models.nerulforcastmodels import ex_Model,model_losss,brent_export_pdf,tansuanli_export_pdf,pp_export_pdf
@ -39,8 +39,8 @@ def predict_main():
edbbusinessurl=edbbusinessurl,
)
# df_zhibiaoshuju,df_zhibiaoliebiao = etadata.get_eta_api_yuanyou_data(data_set=data_set,dataset=dataset) # 原始数据,未处理
df_zhibiaoshuju,df_zhibiaoliebiao = etadata.get_eta_api_pp_data(data_set=data_set,dataset=dataset) # 原始数据,未处理
df_zhibiaoshuju,df_zhibiaoliebiao = etadata.get_eta_api_yuanyou_data(data_set=data_set,dataset=dataset) # 原始数据,未处理
# df_zhibiaoshuju,df_zhibiaoliebiao = etadata.get_eta_api_pp_data(data_set=data_set,dataset=dataset) # 原始数据,未处理
# 数据处理

View File

@ -249,11 +249,9 @@ def model_losss(sqlitedb):
df_combined3['quantile_10'] = df_combined3['volatility'].rolling(60).quantile(0.1)
df_combined3['quantile_90'] = df_combined3['volatility'].rolling(60).quantile(0.9)
df_combined3 = df_combined3.round(4)
# 计算分位数对应的价格,并移动到第二天
# 计算分位数对应的价格
df_combined3['quantile_10_price'] = df_combined3['y'] * (1 + df_combined3['quantile_10'])
# df_combined3['quantile_10_price'] = df_combined3['quantile_10_price'].shift(1)
df_combined3['quantile_90_price'] = df_combined3['y'] * (1 + df_combined3['quantile_90'])
# df_combined3['quantile_90_price'] = df_combined3['quantile_90_price'].shift(1)
# 遍历行
def find_min_max_within_quantile(row):
@ -485,10 +483,67 @@ def model_losss(sqlitedb):
plt.close()
return model_results3
import matplotlib.dates as mdates
def brent_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inputsize=5,dataset='dataset',time = '2024-07-30',reportname='report.pdf',sqlitedb='jbsh_yuanyou.db'):
global y
# 创建内容对应的空列表
content = list()
# 获取特征的近一月值
import pandas as pd
feature_data_df = pd.read_csv(f'dataset/指标数据添加时间特征.csv', parse_dates=['ds']).tail(20)
def draw_feature_trend(feature_data_df, features):
# 画特征近一周的趋势图
feature_df = feature_data_df[['ds','y']+features]
# 遍历X每一列和yy画散点图
for i, col in enumerate(features):
# try:
print(f'正在绘制第{i+1}个特征{col}与价格散点图...')
if col not in ['ds', 'y']:
fig, ax1 = plt.subplots(figsize=(10, 6))
# 在第一个坐标轴上绘制数据
sns.lineplot(data=feature_df, x='ds', y='y', ax=ax1, color='b')
ax1.set_xlabel('日期')
ax1.set_ylabel('y', color='b')
ax1.tick_params('y', colors='b')
# 在 ax1 上添加文本显示值,添加一定的偏移避免值与曲线重叠
for j in range(1, len(feature_df), 2):
value = feature_df['y'].iloc[j]
date = feature_df['ds'].iloc[j]
offset = 1.001
ax1.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='b', fontsize=10)
# 创建第二个坐标轴
ax2 = ax1.twinx()
# 在第二个坐标轴上绘制数据
sns.lineplot(data=feature_df, x='ds', y=col, ax=ax2, color='r')
ax2.set_ylabel(col, color='r')
ax2.tick_params('y', colors='r')
# 在 ax2 上添加文本显示值,添加一定的偏移避免值与曲线重叠
for j in range(0, len(feature_df), 2):
value = feature_df[col].iloc[j]
date = feature_df['ds'].iloc[j]
offset = 1.0003
ax2.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='r', fontsize=10)
# 添加标题
plt.title(col)
# 设置横坐标为日期格式并自动调整
locator = mdates.AutoDateLocator()
formatter = mdates.AutoDateFormatter(locator)
ax1.xaxis.set_major_locator(locator)
ax1.xaxis.set_major_formatter(formatter)
# 文件名特殊字符处理
col = col.replace('*', '-')
col = col.replace(':', '-')
col = col.replace(r'/', '-')
plt.savefig(os.path.join(dataset, f'{col}与价格散点图.png'))
content.append(Graphs.draw_img(os.path.join(dataset, f'{col}与价格散点图.png')))
plt.close()
# except Exception as e:
# print(f'绘制第{i+1}个特征{col}与价格散点图时出错:{e}')
### 添加标题
content.append(Graphs.draw_title(f'{y}{time}预测报告'))
@ -578,295 +633,296 @@ def brent_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inpu
# 绘制特征相关气泡图
content.append(Graphs.draw_text('气泡图中,横轴为指标名称,纵轴为指标名称,面积越大表示相关性越大,面积越小表示相关性越小。'))
grouped = df_zhibiaofenlei.groupby('指标分类')
for name, group in grouped:
cols = group['指标名称'].tolist()
for n in range(0, len(cols), 10):
logger.info(f'开始绘制{name}类指标{n}的气泡图')
cols_subset = cols[n:n+10]
feature_names = ['y'] + cols_subset
correlation_matrix = df_zhibiaoshuju[feature_names].corr()
plt.figure(figsize=(10, 10))
for i in range(len(feature_names)):
for j in range(len(feature_names)):
plt.scatter(i, j, s=abs(correlation_matrix.iloc[i, j]) * 1000, c=correlation_matrix.iloc[i, j], cmap='coolwarm', marker='o')
for i in range(len(feature_names)):
for j in range(len(feature_names)):
plt.text(i, j, f'{correlation_matrix.iloc[i, j]:.2f}', ha='center', va='center', color='black')
plt.xticks(range(len(feature_names)), feature_names, rotation=90)
plt.yticks(range(len(feature_names)), feature_names)
plt.title(f'{name}类指标{n}')
plt.xlabel('指标名称')
plt.ylabel('指标名称')
plt.savefig(os.path.join(dataset, f'{name}{n}气泡图.png'), bbox_inches='tight')
plt.close()
content.append(Graphs.draw_img(os.path.join(dataset,f'{name}{n}气泡图.png')))
logger.info(f'绘制指标相关性气泡图结束')
grouped_corr = pd.DataFrame(columns=['指标分类', '指标数量', '相关性总和'])
# 计算特征相关性
data.rename(columns={y: 'y'}, inplace=True)
data['ds'] = pd.to_datetime(data['ds'])
data.drop(columns=['ds'], inplace=True)
# 创建一个空的 DataFrame 来保存相关系数
correlation_df = pd.DataFrame(columns=['Feature', 'Correlation'])
# 计算各特征与目标列的皮尔逊相关系数,并保存到新的 DataFrame 中
for col in data.columns:
if col!= 'y':
pearson_correlation = np.corrcoef(data[col], data['y'])[0, 1]
spearman_correlation, _ = spearmanr(data[col], data['y'])
new_row = {'Feature': col, 'Pearson_Correlation': round(pearson_correlation,3), 'Spearman_Correlation': round(spearman_correlation,2)}
correlation_df = correlation_df._append(new_row, ignore_index=True)
correlation_df.drop('Correlation', axis=1, inplace=True)
correlation_df.dropna(inplace=True)
correlation_df.to_csv(os.path.join(dataset,'指标相关性分析.csv'), index=False)
data = correlation_df['Pearson_Correlation'].values.tolist()
# 生成 -1 到 1 的 20 个区间
bins = np.linspace(-1, 1, 21)
# 计算每个区间的统计数(这里是区间内数据的数量)
hist_values = [np.sum((data >= bins[i]) & (data < bins[i + 1])) for i in range(len(bins) - 1)]
#设置画布大小
plt.figure(figsize=(10, 6))
# 绘制直方图
plt.bar(bins[:-1], hist_values, width=(bins[1] - bins[0]))
# 添加标题和坐标轴标签
plt.title('皮尔逊相关系数分布图')
plt.xlabel('区间')
plt.ylabel('统计数')
plt.savefig(os.path.join(dataset, '皮尔逊相关性系数.png'))
plt.close()
#设置画布大小
plt.figure(figsize=(10, 6))
data = correlation_df['Spearman_Correlation'].values.tolist()
# 计算每个区间的统计数(这里是区间内数据的数量)
hist_values = [np.sum((data >= bins[i]) & (data < bins[i + 1])) for i in range(len(bins) - 1)]
# 绘制直方图
plt.bar(bins[:-1], hist_values, width=(bins[1] - bins[0]))
# 添加标题和坐标轴标签
plt.title('斯皮尔曼相关系数分布图')
plt.xlabel('区间')
plt.ylabel('统计数')
plt.savefig(os.path.join(dataset, '斯皮尔曼相关性系数.png'))
plt.close()
content.append(Graphs.draw_text(f'指标相关性分析--皮尔逊相关系数:'))
# 皮尔逊正相关 不相关 负相关 的表格
content.append(Graphs.draw_img(os.path.join(dataset,'皮尔逊相关性系数.png')))
content.append(Graphs.draw_little_title('按指标分类分别与预测目标进行皮尔逊相关系数分析:'))
content.append(Graphs.draw_text('''皮尔逊相关系数说明:'''))
content.append(Graphs.draw_text('''衡量两个特征之间的线性相关性。'''))
content.append(Graphs.draw_text('''
相关系数为1表示两个变量之间存在完全正向的线性关系即当一个变量增加时另一个变量也相应增加且变化是完全一致的'''))
content.append(Graphs.draw_text('''当前特征中正相关前十的有:'''))
top10_columns = correlation_df.sort_values(by='Pearson_Correlation',ascending=False).head(10)['Feature'].to_list()
top10 = ','.join(top10_columns)
content.append(Graphs.draw_text(f'''{top10}'''))
# 获取特征的近一月值
feature_data_df = pd.read_csv(f'dataset/指标数据添加时间特征.csv', parse_dates=['ds']).tail(20)
feature_df = feature_data_df[['ds','y']+top10_columns]
# 遍历X每一列和yy画散点图
for i, col in enumerate(feature_df.columns):
print(f'正在绘制第{i+1}个特征{col}与价格散点图...')
if col not in ['ds', 'y']:
fig, ax1 = plt.subplots(figsize=(10, 6))
# 在第一个坐标轴上绘制数据
ax1.plot(feature_df['ds'], feature_df['y'], 'b-')
ax1.set_xlabel('日期')
ax1.set_ylabel('y', color='b')
ax1.tick_params('y', colors='b')
# 在 ax1 上添加文本显示值,添加一定的偏移避免值与曲线重叠
for j in range(1,len(feature_df),2):
value = feature_df['y'].iloc[j]
date = feature_df['ds'].iloc[j]
offset = 1.001
ax1.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='b', fontsize=10)
# 创建第二个坐标轴
ax2 = ax1.twinx()
# 在第二个坐标轴上绘制数据
line2 = ax2.plot(feature_df['ds'], feature_df[col], 'r-')
ax2.set_ylabel(col, color='r')
ax2.tick_params('y', colors='r')
# 在 ax2 上添加文本显示值,添加一定的偏移避免值与曲线重叠
for j in range(0,len(feature_df),2):
value = feature_df[col].iloc[j]
date = feature_df['ds'].iloc[j]
offset = 1.001
ax2.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='r', fontsize=10)
# 添加标题
plt.title(col)
# 设置横坐标为日期格式并自动调整
locator = mdates.AutoDateLocator()
formatter = mdates.AutoDateFormatter(locator)
ax1.xaxis.set_major_locator(locator)
ax1.xaxis.set_major_formatter(formatter)
# 文件名特殊字符处理
col = col.replace('*', '-')
col = col.replace(':', '-')
plt.savefig(os.path.join(dataset, f'{col}与价格散点图.png'))
content.append(Graphs.draw_img(os.path.join(dataset, f'{col}与价格散点图.png')))
plt.close()
content.append(Graphs.draw_text('''相关系数为-1表示两个变量之间存在完全负向的线性关系即当一个变量增加时另一个变量会相应减少且变化是完全相反的'''))
content.append(Graphs.draw_text('''当前特征中负相关前十的有:'''))
tail10_columns = correlation_df.sort_values(by='Pearson_Correlation',ascending=True).head(10)['Feature'].to_list()
top10 = ','.join(tail10_columns)
content.append(Graphs.draw_text(f'''{top10}'''))
# 获取特征的近一周值
feature_df = feature_data_df[['ds','y']+tail10_columns]
# 遍历X每一列和yy画散点图
for i, col in enumerate(feature_df.columns):
print(f'正在绘制第{i+1}个特征{col}与价格散点图...')
if col not in ['ds', 'y']:
fig, ax1 = plt.subplots(figsize=(10, 6))
# 在第一个坐标轴上绘制数据
ax1.plot(feature_df['ds'], feature_df['y'], 'b-')
ax1.set_xlabel('日期')
ax1.set_ylabel('y', color='b')
ax1.tick_params('y', colors='b')
# 在 ax1 上添加文本显示值,添加一定的偏移避免值与曲线重叠
for j in range(len(feature_df)):
if j%2 == 1:
value = feature_df['y'].iloc[j]
date = feature_df['ds'].iloc[j]
offset = 1.001
ax1.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='b', fontsize=10)
# 创建第二个坐标轴
ax2 = ax1.twinx()
# 在第二个坐标轴上绘制数据
line2 = ax2.plot(feature_df['ds'], feature_df[col], 'r-')
ax2.set_ylabel(col, color='r')
ax2.tick_params('y', colors='r')
# 在 ax2 上添加文本显示值,添加一定的偏移避免值与曲线重叠
for j in range(1,len(feature_df),2):
value = feature_df[col].iloc[j]
date = feature_df['ds'].iloc[j]
offset = 1.001
ax2.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='r', fontsize=10)
# 添加标题
plt.title(col)
# 设置横坐标为日期格式并自动调整
locator = mdates.AutoDateLocator()
formatter = mdates.AutoDateFormatter(locator)
ax1.xaxis.set_major_locator(locator)
ax1.xaxis.set_major_formatter(formatter)
# 文件名特殊字符处理
col = col.replace('*', '-')
col = col.replace(':', '-')
col = col.replace('/', '-')
plt.savefig(os.path.join(dataset, f'{col}与价格散点图.png'))
content.append(Graphs.draw_img(os.path.join(dataset, f'{col}与价格散点图.png')))
plt.close()
content.append(Graphs.draw_text('''相关系数接近0表示两个变量之间不存在线性关系即它们的变化不会随着对方的变化而变化。'''))
content.append(Graphs.draw_text(f'指标相关性分析--斯皮尔曼相关系数:'))
# 皮尔逊正相关 不相关 负相关 的表格
content.append(Graphs.draw_img(os.path.join(dataset,'斯皮尔曼相关性系数.png')))
content.append(Graphs.draw_text('斯皮尔曼相关系数Spearmans rank correlation coefficient是一种用于衡量两个变量之间的单调关系不一定是线性关系的统计指标。'))
content.append(Graphs.draw_text('它的计算基于变量的秩次(即变量值的排序位置)而非变量的原始值。'))
content.append(Graphs.draw_text('斯皮尔曼相关系数的取值范围在 -1 到 1 之间。'))
content.append(Graphs.draw_text('当系数为 1 时,表示两个变量之间存在完全正的单调关系;'))
content.append(Graphs.draw_text('''当前特征中正单调关系前十的有:'''))
top10_columns = correlation_df.sort_values(by='Spearman_Correlation',ascending=False).head(10)['Feature'].to_list()
top10 = ','.join(top10_columns)
content.append(Graphs.draw_text(f'''{top10}'''))
for name, group in grouped:
cols = group['指标名称'].tolist()
logger.info(f'开始绘制{name}类指标的相关性直方图')
cols_subset = cols
feature_names = ['y'] + cols_subset
correlation_matrix = df_zhibiaoshuju[feature_names].corr()['y']
feature_df = feature_data_df[['ds','y']+top10_columns]
# 遍历X每一列和yy画散点图
for i, col in enumerate(feature_df.columns):
print(f'正在绘制第{i+1}个特征{col}与价格散点图...')
if col not in ['ds', 'y']:
fig, ax1 = plt.subplots(figsize=(10, 6))
# 在第一个坐标轴上绘制数据
ax1.plot(feature_df['ds'], feature_df['y'], 'b-')
ax1.set_xlabel('日期')
ax1.set_ylabel('y', color='b')
ax1.tick_params('y', colors='b')
# 在 ax1 上添加文本显示值,添加一定的偏移避免值与曲线重叠
for j in range(1,len(feature_df),2):
value = feature_df['y'].iloc[j]
date = feature_df['ds'].iloc[j]
offset = 1.001
ax1.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='b', fontsize=10)
# 创建第二个坐标轴
ax2 = ax1.twinx()
# 在第二个坐标轴上绘制数据
line2 = ax2.plot(feature_df['ds'], feature_df[col], 'r-')
ax2.set_ylabel(col, color='r')
ax2.tick_params('y', colors='r')
# 在 ax2 上添加文本显示值,添加一定的偏移避免值与曲线重叠
for j in range(0,len(feature_df),2):
value = feature_df[col].iloc[j]
date = feature_df['ds'].iloc[j]
offset = 1.001
ax2.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='r', fontsize=10)
# 添加标题
plt.title(col)
# 设置横坐标为日期格式并自动调整
locator = mdates.AutoDateLocator()
formatter = mdates.AutoDateFormatter(locator)
ax1.xaxis.set_major_locator(locator)
ax1.xaxis.set_major_formatter(formatter)
# 文件名特殊字符处理
col = col.replace('*', '-')
col = col.replace(':', '-')
plt.savefig(os.path.join(dataset, f'{col}与价格散点图.png'))
content.append(Graphs.draw_img(os.path.join(dataset, f'{col}与价格散点图.png')))
# 绘制特征相关性直方分布图
plt.figure(figsize=(10,8))
sns.histplot(correlation_matrix.values.flatten(), bins=20, kde=True, color='skyblue')
plt.title(f'{name}类指标(共{len(cols_subset)}个)相关性直方分布图')
plt.xlabel('相关系数')
plt.ylabel('频数')
plt.savefig(os.path.join(dataset, f'{name}类指标相关性直方分布图.png'), bbox_inches='tight')
plt.close()
content.append(Graphs.draw_img(os.path.join(dataset,f'{name}类指标相关性直方分布图.png')))
content.append(Graphs.draw_text(f'{name}类指标(共{len(cols_subset)}个)的相关性直方分布图如上所示。'))
# 相关性大于0的特征
positive_corr_features = correlation_matrix[correlation_matrix > 0].sort_values(ascending=False).index.tolist()[1:]
content.append(Graphs.draw_text('当系数为 -1 时,表示存在完全负的单调关系;'))
content.append(Graphs.draw_text('''当前特征中负单调关系前十的有:'''))
tail10_columns = correlation_df.sort_values(by='Spearman_Correlation',ascending=True).head(10)['Feature'].to_list()
top10 = ','.join(tail10_columns)
content.append(Graphs.draw_text(f'''{top10}'''))
# 获取特征的近一周值
feature_df = feature_data_df[['ds','y']+tail10_columns]
# 遍历X每一列和yy画散点图
for i, col in enumerate(feature_df.columns):
print(f'正在绘制第{i+1}个特征{col}与价格散点图...')
if col not in ['ds', 'y']:
fig, ax1 = plt.subplots(figsize=(10, 6))
# 在第一个坐标轴上绘制数据
ax1.plot(feature_df['ds'], feature_df['y'], 'b-')
ax1.set_xlabel('日期')
ax1.set_ylabel('y', color='b')
ax1.tick_params('y', colors='b')
# 在 ax1 上添加文本显示值,添加一定的偏移避免值与曲线重叠
for j in range(len(feature_df)):
if j%2 == 1:
value = feature_df['y'].iloc[j]
date = feature_df['ds'].iloc[j]
offset = 1.001
ax1.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='b', fontsize=10)
# 创建第二个坐标轴
ax2 = ax1.twinx()
# 在第二个坐标轴上绘制数据
line2 = ax2.plot(feature_df['ds'], feature_df[col], 'r-')
ax2.set_ylabel(col, color='r')
ax2.tick_params('y', colors='r')
# 在 ax2 上添加文本显示值,添加一定的偏移避免值与曲线重叠
for j in range(1,len(feature_df),2):
value = feature_df[col].iloc[j]
date = feature_df['ds'].iloc[j]
offset = 1.001
ax2.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='r', fontsize=10)
# 添加标题
plt.title(col)
# 设置横坐标为日期格式并自动调整
locator = mdates.AutoDateLocator()
formatter = mdates.AutoDateFormatter(locator)
ax1.xaxis.set_major_locator(locator)
ax1.xaxis.set_major_formatter(formatter)
# 文件名特殊字符处理
col = col.replace('*', '-')
col = col.replace(':', '-')
plt.savefig(os.path.join(dataset, f'{col}与价格散点图.png'))
content.append(Graphs.draw_img(os.path.join(dataset, f'{col}与价格散点图.png')))
print(f'{name}下正相关的特征值有:',positive_corr_features)
if len(positive_corr_features) > 5:
positive_corr_features = positive_corr_features[0:5]
content.append(Graphs.draw_text(f'{name}类指标中与预测目标y正相关前五的特征有{positive_corr_features}'))
draw_feature_trend(feature_data_df, positive_corr_features)
elif len(positive_corr_features) == 0:
pass
else:
positive_corr_features = positive_corr_features
content.append(Graphs.draw_text(f'其中与预测目标y正相关的特征有{positive_corr_features}'))
draw_feature_trend(feature_data_df, positive_corr_features)
# 相关性小于0的特征
negative_corr_features = correlation_matrix[correlation_matrix < 0].sort_values(ascending=True).index.tolist()
print(f'{name}下负相关的特征值有:',negative_corr_features)
if len(negative_corr_features) > 5:
negative_corr_features = negative_corr_features[:5]
content.append(Graphs.draw_text(f'与预测目标y负相关前五的特征有{negative_corr_features}'))
draw_feature_trend(feature_data_df, negative_corr_features)
elif len(negative_corr_features) == 0:
pass
else:
content.append(Graphs.draw_text(f'{name}类指标中与预测目标y负相关的特征有{negative_corr_features}'))
draw_feature_trend(feature_data_df, negative_corr_features)
# 计算correlation_sum 第一行的相关性的绝对值的总和
correlation_sum = correlation_matrix.abs().sum()
logger.info(f'{name}类指标的相关性总和为:{correlation_sum}')
# 分组的相关性总和拼接到grouped_corr
goup_corr = pd.DataFrame({'指标分类': [name], '指标数量': [len(cols_subset)], '相关性总和': [correlation_sum]})
grouped_corr = pd.concat([grouped_corr, goup_corr], axis=0, ignore_index=True)
# 绘制相关性总和的气泡图
logger.info(f'开始绘制相关性总和的气泡图')
plt.figure(figsize=(10, 10))
sns.scatterplot(data=grouped_corr, x='相关性总和', y='指标数量', size='相关性总和', sizes=(grouped_corr['相关性总和'].min()*5, grouped_corr['相关性总和'].max()*5), hue='指标分类', palette='viridis')
plt.title('指标分类相关性总和的气泡图')
plt.ylabel('数量')
plt.savefig(os.path.join(dataset, '指标分类相关性总和的气泡图.png'), bbox_inches='tight')
plt.close()
content.append(Graphs.draw_text('当系数为 0 时,表示两个变量之间不存在单调关系。'))
content.append(Graphs.draw_text('与皮尔逊相关系数相比,斯皮尔曼相关系数对于数据中的异常值不敏感,更适用于处理非线性关系或存在极端值的数据。'))
content.append(Graphs.draw_img(os.path.join(dataset,'指标分类相关性总和的气泡图.png')))
logger.info(f'绘制相关性总和的气泡图结束')
# # 计算特征相关性
# data.rename(columns={y: 'y'}, inplace=True)
# data['ds'] = pd.to_datetime(data['ds'])
# data.drop(columns=['ds'], inplace=True)
# # 创建一个空的 DataFrame 来保存相关系数
# correlation_df = pd.DataFrame(columns=['Feature', 'Correlation'])
# # 计算各特征与目标列的皮尔逊相关系数,并保存到新的 Data 中
# for col in data.columns:
# if col!= 'y':
# pearson_correlation = np.corrcoef(data[col], data['y'])[0, 1]
# spearman_correlation, _ = spearmanr(data[col], data['y'])
# new_row = {'Feature': col, 'Pearson_Correlation': round(pearson_correlation,3), 'Spearman_Correlation': round(spearman_correlation,2)}
# correlation_df = correlation_df._append(new_row, ignore_index=True)
# correlation_df.drop('Correlation', axis=1, inplace=True)
# correlation_df.dropna(inplace=True)
# correlation_df.to_csv(os.path.join(dataset,'指标相关性分析.csv'), index=False)
# data = correlation_df['Pearson_Correlation'].values.tolist()
# # 生成 -1 到 1 的 20 个区间
# bins = np.linspace(-1, 1, 21)
# # 计算每个区间的统计数(这里是区间内数据的数量)
# hist_values = [np.sum((data >= bins[i]) & (data < bins[i + 1])) for i in range(len(bins) - 1)]
# #设置画布大小
# plt.figure(figsize=(10, 6))
# # 绘制直方图
# plt.bar(bins[:-1], hist_values, width=(bins[1] - bins[0]))
# # 添加标题和坐标轴标签
# plt.title('皮尔逊相关系数分布图')
# plt.xlabel('区间')
# plt.ylabel('统计数')
# plt.savefig(os.path.join(dataset, '皮尔逊相关性系数.png'))
# plt.close()
# #设置画布大小
# plt.figure(figsize=(10, 6))
# data = correlation_df['Spearman_Correlation'].values.tolist()
# # 计算每个区间的统计数(这里是区间内数据的数量)
# hist_values = [np.sum((data >= bins[i]) & (data < bins[i + 1])) for i in range(len(bins) - 1)]
# # 绘制直方图
# plt.bar(bins[:-1], hist_values, width=(bins[1] - bins[0]))
# # 添加标题和坐标轴标签
# plt.title('斯皮尔曼相关系数分布图')
# plt.xlabel('区间')
# plt.ylabel('统计数')
# plt.savefig(os.path.join(dataset, '斯皮尔曼相关性系数.png'))
# plt.close()
# content.append(Graphs.draw_text(f'指标相关性分析--皮尔逊相关系数:'))
# # 皮尔逊正相关 不相关 负相关 的表格
# content.append(Graphs.draw_img(os.path.join(dataset,'皮尔逊相关性系数.png')))
# content.append(Graphs.draw_text('''皮尔逊相关系数说明:'''))
# content.append(Graphs.draw_text('''衡量两个特征之间的线性相关性。'''))
# content.append(Graphs.draw_text('''
# 相关系数为1表示两个变量之间存在完全正向的线性关系即当一个变量增加时另一个变量也相应增加且变化是完全一致的。'''))
# content.append(Graphs.draw_text('''当前特征中正相关前十的有:'''))
# top10_columns = correlation_df.sort_values(by='Pearson_Correlation',ascending=False).head(10)['Feature'].to_list()
# top10 = ','.join(top10_columns)
# content.append(Graphs.draw_text(f'''{top10}'''))
# feature_df = feature_data_df[['ds','y']+top10_columns]
# # 遍历X每一列和yy画散点图
# for i, col in enumerate(feature_df.columns):
# print(f'正在绘制第{i+1}个特征{col}与价格散点图...')
# if col not in ['ds', 'y']:
# fig, ax1 = plt.subplots(figsize=(10, 6))
# # 在第一个坐标轴上绘制数据
# ax1.plot(feature_df['ds'], feature_df['y'], 'b-')
# ax1.set_xlabel('日期')
# ax1.set_ylabel('y', color='b')
# ax1.tick_params('y', colors='b')
# # 在 ax1 上添加文本显示值,添加一定的偏移避免值与曲线重叠
# for j in range(1,len(feature_df),2):
# value = feature_df['y'].iloc[j]
# date = feature_df['ds'].iloc[j]
# offset = 1.001
# ax1.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='b', fontsize=10)
# # 创建第二个坐标轴
# ax2 = ax1.twinx()
# # 在第二个坐标轴上绘制数据
# line2 = ax2.plot(feature_df['ds'], feature_df[col], 'r-')
# ax2.set_ylabel(col, color='r')
# ax2.tick_params('y', colors='r')
# # 在 ax2 上添加文本显示值,添加一定的偏移避免值与曲线重叠
# for j in range(0,len(feature_df),2):
# value = feature_df[col].iloc[j]
# date = feature_df['ds'].iloc[j]
# offset = 1.001
# ax2.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='r', fontsize=10)
# # 添加标题
# plt.title(col)
# # 设置横坐标为日期格式并自动调整
# locator = mdates.AutoDateLocator()
# formatter = mdates.AutoDateFormatter(locator)
# ax1.xaxis.set_major_locator(locator)
# ax1.xaxis.set_major_formatter(formatter)
# # 文件名特殊字符处理
# col = col.replace('*', '-')
# col = col.replace(':', '-')
# plt.savefig(os.path.join(dataset, f'{col}与价格散点图.png'))
# content.append(Graphs.draw_img(os.path.join(dataset, f'{col}与价格散点图.png')))
# plt.close()
# content.append(Graphs.draw_text(f'指标相关性分析--斯皮尔曼相关系数:'))
# # 皮尔逊正相关 不相关 负相关 的表格
# content.append(Graphs.draw_img(os.path.join(dataset,'斯皮尔曼相关性系数.png')))
# content.append(Graphs.draw_text('斯皮尔曼相关系数Spearmans rank correlation coefficient是一种用于衡量两个变量之间的单调关系不一定是线性关系的统计指标。'))
# content.append(Graphs.draw_text('它的计算基于变量的秩次(即变量值的排序位置)而非变量的原始值。'))
# content.append(Graphs.draw_text('斯皮尔曼相关系数的取值范围在 -1 到 1 之间。'))
# content.append(Graphs.draw_text('当系数为 1 时,表示两个变量之间存在完全正的单调关系;'))
# content.append(Graphs.draw_text('''当前特征中正单调关系前十的有:'''))
# top10_columns = correlation_df.sort_values(by='Spearman_Correlation',ascending=False).head(10)['Feature'].to_list()
# top10 = ','.join(top10_columns)
# content.append(Graphs.draw_text(f'''{top10}'''))
# feature_df = feature_data_df[['ds','y']+top10_columns]
# # 遍历X每一列和yy画散点图
# for i, col in enumerate(feature_df.columns):
# print(f'正在绘制第{i+1}个特征{col}与价格散点图...')
# if col not in ['ds', 'y']:
# fig, ax1 = plt.subplots(figsize=(10, 6))
# # 在第一个坐标轴上绘制数据
# ax1.plot(feature_df['ds'], feature_df['y'], 'b-')
# ax1.set_xlabel('日期')
# ax1.set_ylabel('y', color='b')
# ax1.tick_params('y', colors='b')
# # 在 ax1 上添加文本显示值,添加一定的偏移避免值与曲线重叠
# for j in range(1,len(feature_df),2):
# value = feature_df['y'].iloc[j]
# date = feature_df['ds'].iloc[j]
# offset = 1.001
# ax1.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='b', fontsize=10)
# # 创建第二个坐标轴
# ax2 = ax1.twinx()
# # 在第二个坐标轴上绘制数据
# line2 = ax2.plot(feature_df['ds'], feature_df[col], 'r-')
# ax2.set_ylabel(col, color='r')
# ax2.tick_params('y', colors='r')
# # 在 ax2 上添加文本显示值,添加一定的偏移避免值与曲线重叠
# for j in range(0,len(feature_df),2):
# value = feature_df[col].iloc[j]
# date = feature_df['ds'].iloc[j]
# offset = 1.001
# ax2.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='r', fontsize=10)
# # 添加标题
# plt.title(col)
# # 设置横坐标为日期格式并自动调整
# locator = mdates.AutoDateLocator()
# formatter = mdates.AutoDateFormatter(locator)
# ax1.xaxis.set_major_locator(locator)
# ax1.xaxis.set_major_formatter(formatter)
# # 文件名特殊字符处理
# col = col.replace('*', '-')
# col = col.replace(':', '-')
# plt.savefig(os.path.join(dataset, f'{col}与价格散点图.png'))
# content.append(Graphs.draw_img(os.path.join(dataset, f'{col}与价格散点图.png')))
# plt.close()
# content.append(Graphs.draw_text('当系数为 -1 时,表示存在完全负的单调关系;'))
# content.append(Graphs.draw_text('''当前特征中负单调关系前十的有:'''))
# tail10_columns = correlation_df.sort_values(by='Spearman_Correlation',ascending=True).head(10)['Feature'].to_list()
# top10 = ','.join(tail10_columns)
# content.append(Graphs.draw_text(f'''{top10}'''))
# # 获取特征的近一周值
# feature_df = feature_data_df[['ds','y']+tail10_columns]
# # 遍历X每一列和yy画散点图
# for i, col in enumerate(feature_df.columns):
# print(f'正在绘制第{i+1}个特征{col}与价格散点图...')
# if col not in ['ds', 'y']:
# fig, ax1 = plt.subplots(figsize=(10, 6))
# # 在第一个坐标轴上绘制数据
# ax1.plot(feature_df['ds'], feature_df['y'], 'b-')
# ax1.set_xlabel('日期')
# ax1.set_ylabel('y', color='b')
# ax1.tick_params('y', colors='b')
# # 在 ax1 上添加文本显示值,添加一定的偏移避免值与曲线重叠
# for j in range(len(feature_df)):
# if j%2 == 1:
# value = feature_df['y'].iloc[j]
# date = feature_df['ds'].iloc[j]
# offset = 1.001
# ax1.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='b', fontsize=10)
# # 创建第二个坐标轴
# ax2 = ax1.twinx()
# # 在第二个坐标轴上绘制数据
# line2 = ax2.plot(feature_df['ds'], feature_df[col], 'r-')
# ax2.set_ylabel(col, color='r')
# ax2.tick_params('y', colors='r')
# # 在 ax2 上添加文本显示值,添加一定的偏移避免值与曲线重叠
# for j in range(1,len(feature_df),2):
# value = feature_df[col].iloc[j]
# date = feature_df['ds'].iloc[j]
# offset = 1.001
# ax2.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='r', fontsize=10)
# # 添加标题
# plt.title(col)
# # 设置横坐标为日期格式并自动调整
# locator = mdates.AutoDateLocator()
# formatter = mdates.AutoDateFormatter(locator)
# ax1.xaxis.set_major_locator(locator)
# ax1.xaxis.set_major_formatter(formatter)
# # 文件名特殊字符处理
# col = col.replace('*', '-')
# col = col.replace(':', '-')
# plt.savefig(os.path.join(dataset, f'{col}与价格散点图.png'))
# content.append(Graphs.draw_img(os.path.join(dataset, f'{col}与价格散点图.png')))
# plt.close()
# content.append(Graphs.draw_text('当系数为 0 时,表示两个变量之间不存在单调关系。'))
# content.append(Graphs.draw_text('与皮尔逊相关系数相比,斯皮尔曼相关系数对于数据中的异常值不敏感,更适用于处理非线性关系或存在极端值的数据。'))
content.append(Graphs.draw_little_title('模型选择:'))
content.append(Graphs.draw_text(f'预测使用了{num_models}个模型进行训练拟合通过评估指标MAE从小到大排列前5个模型的简介如下'))
@ -934,6 +990,8 @@ def brent_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inpu
except TimeoutError as e:
print(f"请求超时: {e}")
def pp_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inputsize=5,dataset='dataset',time = '2024-07-30',reportname='report.pdf'):
global y
# 创建内容对应的空列表