日度聚烯烃上传八大维度配置更改
This commit is contained in:
parent
b9b23dbf77
commit
c7dac7586d
@ -132,12 +132,17 @@ ClassifyId = 1161
|
||||
|
||||
|
||||
# 变量定义--测试环境
|
||||
server_host = '192.168.100.53'
|
||||
|
||||
server_host = '192.168.100.53' # 内网
|
||||
# server_host = '183.242.74.28' # 外网
|
||||
login_pushreport_url = f"http://{server_host}:8080/jingbo-dev/api/server/login"
|
||||
# 上传报告
|
||||
upload_url = f"http://{server_host}:8080/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave"
|
||||
# 停更预警
|
||||
upload_warning_url = f"http://{server_host}:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/save"
|
||||
# 查询数据项编码
|
||||
query_data_list_item_nos_url = f"http://{server_host}:8080/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos"
|
||||
# 上传数据项值
|
||||
push_data_value_list_url = f"http://{server_host}:8080/jingbo-dev/api/dw/dataValue/pushDataValueList"
|
||||
|
||||
login_data = {
|
||||
"data": {
|
||||
@ -190,6 +195,31 @@ query_data_list_item_nos_data = {
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
push_data_value_list_data = {
|
||||
"funcModule": "数据表信息列表",
|
||||
"funcOperation": "新增",
|
||||
"data": [
|
||||
{"dataItemNo": "91230600716676129",
|
||||
"dataDate": "20230113",
|
||||
"dataStatus": "add",
|
||||
"dataValue": 100.11
|
||||
},
|
||||
{"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY",
|
||||
"dataDate": "20230113",
|
||||
"dataStatus": "add",
|
||||
"dataValue": 100.55
|
||||
},
|
||||
{"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY",
|
||||
"dataDate": "20230113",
|
||||
"dataStatus": "add",
|
||||
"dataValue": 100.55
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
|
||||
|
||||
# 八大维度数据项编码
|
||||
bdwd_items = {
|
||||
'ciri': 'jxtppbdwdcr',
|
||||
|
@ -33,6 +33,7 @@ global_config.update({
|
||||
'test_size': test_size,
|
||||
'modelsindex': modelsindex,
|
||||
'rote': rote,
|
||||
'bdwd_items': bdwd_items,
|
||||
|
||||
# 特征工程开关
|
||||
'is_del_corr': is_del_corr,
|
||||
@ -44,13 +45,13 @@ global_config.update({
|
||||
|
||||
# 时间参数
|
||||
'start_year': start_year,
|
||||
'end_time': end_time or datetime.datetime.now().strftime("%Y-%m-%d"),
|
||||
'end_time': end_time ,
|
||||
'freq': freq, # 保持列表结构
|
||||
|
||||
# 接口配置
|
||||
'login_pushreport_url': login_pushreport_url,
|
||||
'login_data': login_data,
|
||||
'upload_url': upload_url,
|
||||
'upload_url': upload_url,
|
||||
'upload_warning_url': upload_warning_url,
|
||||
'warning_data': warning_data,
|
||||
|
||||
@ -58,6 +59,10 @@ global_config.update({
|
||||
'query_data_list_item_nos_url': query_data_list_item_nos_url,
|
||||
'query_data_list_item_nos_data': query_data_list_item_nos_data,
|
||||
|
||||
# 上传数据项
|
||||
'push_data_value_list_url': push_data_value_list_url,
|
||||
'push_data_value_list_data': push_data_value_list_data,
|
||||
|
||||
# eta 配置
|
||||
'APPID': APPID,
|
||||
'SECRET': SECRET,
|
||||
@ -354,7 +359,7 @@ def predict_main():
|
||||
reportname=reportname, sqlitedb=sqlitedb),
|
||||
|
||||
logger.info('制作报告end')
|
||||
logger.info('模型训练完成')
|
||||
logger.info('模型训练完成')
|
||||
|
||||
push_market_value()
|
||||
|
||||
@ -383,12 +388,14 @@ def predict_main():
|
||||
if __name__ == '__main__':
|
||||
# global end_time
|
||||
# 遍历2024-11-25 到 2024-12-3 之间的工作日日期
|
||||
for i_time in pd.date_range('2025-2-1', '2025-3-18', freq='M'):
|
||||
try:
|
||||
global_config['end_time'] = i_time.strftime('%Y-%m-%d')
|
||||
predict_main()
|
||||
except Exception as e:
|
||||
logger.info(f'预测失败:{e}')
|
||||
continue
|
||||
# for i_time in pd.date_range('2025-2-1', '2025-3-18', freq='B'):
|
||||
# try:
|
||||
# global_config['end_time'] = i_time.strftime('%Y-%m-%d')
|
||||
# predict_main()
|
||||
# except Exception as e:
|
||||
# logger.info(f'预测失败:{e}')
|
||||
# continue
|
||||
|
||||
# predict_main()
|
||||
|
||||
push_market_value()
|
||||
|
@ -371,8 +371,8 @@ def ex_Model_Juxiting(df, horizon, input_size, train_steps, val_check_steps, ear
|
||||
scaler_type='standard', early_stop_patience_steps=early_stop_patience_steps),
|
||||
TFT(h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps,
|
||||
scaler_type='standard', early_stop_patience_steps=early_stop_patience_steps),
|
||||
FEDformer(h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps,
|
||||
scaler_type='standard', early_stop_patience_steps=early_stop_patience_steps),
|
||||
# FEDformer(h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps,
|
||||
# scaler_type='standard', early_stop_patience_steps=early_stop_patience_steps),
|
||||
StemGNN(h=horizon, input_size=input_size, n_series=1, max_steps=train_steps, val_check_steps=val_check_steps,
|
||||
scaler_type='standard', early_stop_patience_steps=early_stop_patience_steps),
|
||||
MLPMultivariate(h=horizon, input_size=input_size, n_series=1, max_steps=train_steps,
|
||||
@ -461,16 +461,20 @@ def ex_Model_Juxiting(df, horizon, input_size, train_steps, val_check_steps, ear
|
||||
if config.is_update_eta:
|
||||
df_predict['ds'] = pd.to_datetime(df_predict['ds'])
|
||||
dates = df_predict['ds'].dt.strftime('%Y-%m-%d')
|
||||
|
||||
|
||||
for m in modelsindex.keys():
|
||||
list = []
|
||||
for date, value in zip(dates, df_predict[m]):
|
||||
list.append({'Date': date, 'Value': value})
|
||||
data['DataList'] = [list[-1]]
|
||||
data['IndexCode'] = modelsindex[m]
|
||||
data['IndexName'] = f'聚烯烃价格预测{m}模型'
|
||||
data['Remark'] = m
|
||||
etadata.push_data(data=data)
|
||||
try:
|
||||
list = []
|
||||
for date, value in zip(dates, df_predict[m].round(2)):
|
||||
list.append({'Date': date, 'Value': value})
|
||||
data['DataList'] = [list[-1]]
|
||||
data['IndexCode'] = modelsindex[m]
|
||||
data['IndexName'] = f'聚烯烃价格预测{m}模型'
|
||||
data['Remark'] = m
|
||||
|
||||
etadata.push_data(data=data)
|
||||
except Exception as e:
|
||||
config.logger.error(f'上传eta数据失败:{e}')
|
||||
|
||||
# return nf_test_preds
|
||||
return
|
||||
|
Loading…
Reference in New Issue
Block a user