特征停更预警消息推送

This commit is contained in:
workpc 2024-12-05 16:35:37 +08:00
parent dabff4b157
commit c893350b7d
4 changed files with 175 additions and 181 deletions

View File

@ -92,63 +92,14 @@ ClassifyId = 1214
### 报告上传配置
# 变量定义--线上环境
login_pushreport_url = "http://10.200.32.39/jingbo-api/api/server/login"
upload_url = "http://10.200.32.39/jingbo-api/api/analysis/reportInfo/researchUploadReportSave"
upload_warning_url = "http://10.200.32.39/jingbo-api/api/basicBuiness/crudeOilWarning/save"
login_data = {
"data": {
"account": "api_dev",
"password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=",
"tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
"terminal": "API"
},
"funcModule": "API",
"funcOperation": "获取token"
}
upload_data = {
"funcModule":'研究报告信息',
"funcOperation":'上传原油价格预测报告',
"data":{
"ownerAccount":'27663', #报告所属用户账号 27663 - 刘小朋
"reportType":'OIL_PRICE_FORECAST', # 报告类型固定为OIL_PRICE_FORECAST
"fileName": '', #文件名称
"fileBase64": '' ,#文件内容base64
"categoryNo":'yyjgycbg', # 研究报告分类编码
"smartBusinessClassCode":'YCJGYCBG', #分析报告分类编码
"reportEmployeeCode":"E40482" ,# 报告人 E40482 - 管理员 0000027663 - 刘小朋
"reportDeptCode" :"002000621000", # 报告部门 - 002000621000 SH期货研究部
"productGroupCode":"RAW_MATERIAL" # 商品分类
}
}
warning_data = {
"funcModule":'原油特征停更预警',
"funcOperation":'原油特征停更预警',
"data":{
'WARNING_TYPE_NAME':'特征数据停更预警',
'WARNING_CONTENT':'',
'WARNING_DATE':''
}
}
# # 变量定义--测试环境
# login_pushreport_url = "http://192.168.100.53:8080/jingbo-dev/api/server/login"
# upload_url = "http://192.168.100.53:8080/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave"
# # upload_url = "http://192.168.100.109:8080/jingbo/api/analysis/reportInfo/researchUploadReportSave" # zhaoqiwei
# upload_warning_url = "http://192.168.100.53:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/save"
# login_pushreport_url = "http://10.200.32.39/jingbo-api/api/server/login"
# upload_url = "http://10.200.32.39/jingbo-api/api/analysis/reportInfo/researchUploadReportSave"
# upload_warning_url = "http://10.200.32.39/jingbo-api/api/basicBuiness/crudeOilWarning/save"
# login_data = {
# "data": {
# "account": "api_test",
# # "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456
# "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", # 123456
# "account": "api_dev",
# "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=",
# "tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
# "terminal": "API"
# },
@ -156,18 +107,20 @@ warning_data = {
# "funcOperation": "获取token"
# }
# upload_data = {
# "funcModule":'研究报告信息',
# "funcOperation":'上传原油价格预测报告',
# "data":{
# "ownerAccount":'arui', #报告所属用户账号
# "ownerAccount":'27663', #报告所属用户账号 27663 - 刘小朋
# "reportType":'OIL_PRICE_FORECAST', # 报告类型固定为OIL_PRICE_FORECAST
# "fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', #文件名称
# "fileName": '', #文件名称
# "fileBase64": '' ,#文件内容base64
# "categoryNo":'yyjgycbg', # 研究报告分类编码
# "smartBusinessClassCode":'YCJGYCBG', #分析报告分类编码
# "reportEmployeeCode":"E40116", # 报告人
# "reportDeptCode" :"D0044" ,# 报告部门
# "reportEmployeeCode":"E40482" ,# 报告人 E40482 - 管理员 0000027663 - 刘小朋
# "reportDeptCode" :"002000621000", # 报告部门 - 002000621000 SH期货研究部
# "productGroupCode":"RAW_MATERIAL" # 商品分类
# }
# }
@ -182,6 +135,53 @@ warning_data = {
# }
# }
# # 变量定义--测试环境
login_pushreport_url = "http://192.168.100.53:8080/jingbo-dev/api/server/login"
upload_url = "http://192.168.100.53:8080/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave"
# upload_url = "http://192.168.100.109:8080/jingbo/api/analysis/reportInfo/researchUploadReportSave" # zhaoqiwei
upload_warning_url = "http://192.168.100.53:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/save"
login_data = {
"data": {
"account": "api_test",
# "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456
"password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", # 123456
"tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
"terminal": "API"
},
"funcModule": "API",
"funcOperation": "获取token"
}
upload_data = {
"funcModule":'研究报告信息',
"funcOperation":'上传原油价格预测报告',
"data":{
"ownerAccount":'arui', #报告所属用户账号
"reportType":'OIL_PRICE_FORECAST', # 报告类型固定为OIL_PRICE_FORECAST
"fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', #文件名称
"fileBase64": '' ,#文件内容base64
"categoryNo":'yyjgycbg', # 研究报告分类编码
"smartBusinessClassCode":'YCJGYCBG', #分析报告分类编码
"reportEmployeeCode":"E40116", # 报告人
"reportDeptCode" :"D0044" ,# 报告部门
"productGroupCode":"RAW_MATERIAL" # 商品分类
}
}
warning_data = {
"funcModule":'原油特征停更预警',
"funcOperation":'原油特征停更预警',
"data":{
'WARNING_TYPE_NAME':'特征数据停更预警',
'WARNING_CONTENT':'',
'WARNING_DATE':''
}
}
### 线上开关
# is_train = True # 是否训练
# is_debug = False # 是否调试
@ -198,14 +198,14 @@ warning_data = {
### 开关
is_train = True # 是否训练
is_debug = False # 是否调试
is_eta = True # 是否使用eta接口
is_eta = False # 是否使用eta接口
is_timefurture = True # 是否使用时间特征
is_fivemodels = False # 是否使用之前保存的最佳的5个模型
is_edbcode = True # 特征使用edbcoding列表中的
is_edbnamelist = False # 自定义特征对应上面的edbnamelist
is_update_eta = False # 预测结果上传到eta
is_update_report = False # 是否上传报告
is_update_warning_data = False # 是否上传预警数据
is_update_warning_data = True # 是否上传预警数据
### 北京环境数据库jbsh_test
# url: jdbc:mysql://192.168.101.27:3306/jingbo_test?autoReconnect=true&useUnicode=true&characterEncoding=utf8&zeroDateTimeBehavior=convertToNull&transformedBitIsBoolean=true&useSSL=false&serverTimezone=GMT%2B8&nullCatalogMeansCurrent=true

View File

@ -134,25 +134,38 @@ def upload_warning_data(warning_data):
return None
def upload_warning_info(last_update_times_df,y_last_update_time):
# def upload_warning_info(last_update_times_df,y_last_update_time):
# logger.info(f'上传预警信息')
# try:
# warning_data_df = last_update_times_df[last_update_times_df['warning_date']<y_last_update_time][['stop_update_period','warning_date','last_update_time','update_period','feature']]
# warning_data_df.columns = ['停更周期','预警日期','最后更新时间','更新周期','特征名称']
# if len(warning_data_df) > 0:
# content = '原油特征指标预警信息:\n\n'
# warning_data_df = warning_data_df.sort_values(by='停更周期',ascending=False)
# fixed_length = 20
# warning_data_df['特征名称'] = warning_data_df['特征名称'].str.replace(" ", "")
# content = warning_data_df.to_string(index=False, col_space=fixed_length)
# else:
# logger.info(f'没有需要上传的预警信息')
# content = '没有需要维护的特征指标'
# warning_date = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
# warning_data['data']['WARNING_DATE'] = warning_date
# warning_data['data']['WARNING_CONTENT'] = content
# upload_warning_data(warning_data)
# logger.info(f'上传预警信息成功')
# except Exception as e:
# logger.error(f'上传预警信息失败:{e}')
def upload_warning_info(df_count):
logger.info(f'上传预警信息')
try:
warning_data_df = last_update_times_df[last_update_times_df['warning_date']<y_last_update_time][['stop_update_period','warning_date','last_update_time','update_period','feature']]
warning_data_df.columns = ['停更周期','预警日期','最后更新时间','更新周期','特征名称']
if len(warning_data_df) > 0:
content = '原油特征指标预警信息:\n\n'
warning_data_df = warning_data_df.sort_values(by='停更周期',ascending=False)
fixed_length = 20
warning_data_df['特征名称'] = warning_data_df['特征名称'].str.replace(" ", "")
content = warning_data_df.to_string(index=False, col_space=fixed_length)
else:
logger.info(f'没有需要上传的预警信息')
content = '没有需要维护的特征指标'
warning_date = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
warning_date = datetime.datetime.now().strftime('%Y-%m-%d')
content = f'{warning_date}{df_count}个停更'
warning_data['data']['WARNING_DATE'] = warning_date
warning_data['data']['WARNING_CONTENT'] = content
upload_warning_data(warning_data)
logger.info(f'上传预警信息成功')
except Exception as e:
@ -571,13 +584,13 @@ def datachuli(df_zhibiaoshuju,df_zhibiaoliebiao,datecol='date',end_time='',y='y'
# 获取start_year年到end_time的数据
df = df[df['ds'].dt.year >= start_year]
df = df[df['ds'] <= end_time]
last_update_times_df,y_last_update_time = create_feature_last_update_time(df)
logger.info(f'删除预警的特征前数据量:{df.shape}')
columns_to_drop = last_update_times_df[last_update_times_df['warning_date'] < y_last_update_time ]['feature'].values.tolist()
df = df.drop(columns = columns_to_drop)
logger.info(f'删除预警的特征后数据量:{df.shape}')
if is_update_warning_data:
upload_warning_info(last_update_times_df,y_last_update_time)
# last_update_times_df,y_last_update_time = create_feature_last_update_time(df)
# logger.info(f'删除预警的特征前数据量:{df.shape}')
# columns_to_drop = last_update_times_df[last_update_times_df['warning_date'] < y_last_update_time ]['feature'].values.tolist()
# df = df.drop(columns = columns_to_drop)
# logger.info(f'删除预警的特征后数据量:{df.shape}')
# if is_update_warning_data:
# upload_warning_info(last_update_times_df,y_last_update_time)
# 去掉近最后数据对应的日期在六月以前的列删除近2月的数据是常熟的列
current_date = datetime.datetime.now()
two_months_ago = current_date - timedelta(days=180)

View File

@ -139,8 +139,9 @@ def predict_main():
sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
try:
if is_weekday:
logger.info('今天是周一,更新预测模型')
# if is_weekday:
if True:
logger.info('今天是周一,发送特征预警')
# 上传预警信息到数据库
warning_data_df = df_zhibiaoliebiao.copy()
warning_data_df = warning_data_df[warning_data_df['停更周期']> 3 ][['指标名称', '指标id', '频度','更新周期','指标来源','最后更新时间','停更周期']]
@ -153,11 +154,13 @@ def predict_main():
# 插入数据之前查询表数据然后新增id列
existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine)
if not existing_data.empty:
max_id = existing_data['id'].max()
warning_data_df['id'] = range(max_id + 1, max_id + 1 + len(warning_data_df))
max_id = existing_data['ID'].astype(int).max()
warning_data_df['ID'] = range(max_id + 1, max_id + 1 + len(warning_data_df))
else:
warning_data_df['id'] = range(1, 1 + len(warning_data_df))
warning_data_df['ID'] = range(1, 1 + len(warning_data_df))
warning_data_df.to_sql(table_name, con=engine, if_exists='append', index=False)
if is_update_warning_data:
upload_warning_info(len(warning_data_df))
except:
logger.info('上传预警信息到数据库失败')
@ -170,25 +173,25 @@ def predict_main():
row, col = df.shape
now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
ex_Model(df,
horizon=horizon,
input_size=input_size,
train_steps=train_steps,
val_check_steps=val_check_steps,
early_stop_patience_steps=early_stop_patience_steps,
is_debug=is_debug,
dataset=dataset,
is_train=is_train,
is_fivemodels=is_fivemodels,
val_size=val_size,
test_size=test_size,
settings=settings,
now=now,
etadata=etadata,
modelsindex=modelsindex,
data=data,
is_eta=is_eta,
)
# ex_Model(df,
# horizon=horizon,
# input_size=input_size,
# train_steps=train_steps,
# val_check_steps=val_check_steps,
# early_stop_patience_steps=early_stop_patience_steps,
# is_debug=is_debug,
# dataset=dataset,
# is_train=is_train,
# is_fivemodels=is_fivemodels,
# val_size=val_size,
# test_size=test_size,
# settings=settings,
# now=now,
# etadata=etadata,
# modelsindex=modelsindex,
# data=data,
# is_eta=is_eta,
# )
logger.info('模型训练完成')

File diff suppressed because one or more lines are too long