普货报告
This commit is contained in:
parent
89ac2b4531
commit
c92f3925d3
@ -1,9 +1,9 @@
|
||||
# 读取配置
|
||||
|
||||
from lib.dataread import *
|
||||
from config_shiyoujiao_lvyong import *
|
||||
from config_shiyoujiao_puhuo import *
|
||||
from lib.tools import SendMail, exception_logger
|
||||
from models.nerulforcastmodels import ex_Model, model_losss, shiyoujiao_lvyong_export_pdf
|
||||
from models.nerulforcastmodels import ex_Model, model_losss, shiyoujiao_puhuo_export_pdf
|
||||
import datetime
|
||||
import torch
|
||||
torch.set_float32_matmul_precision("high")
|
||||
@ -425,8 +425,8 @@ def predict_main():
|
||||
reportname = '石油焦大模型普货渠道.pdf' # 报告文件名
|
||||
# reportname = f'石油焦大模型普货日度预测--{end_time}.pdf' # 报告文件名
|
||||
# reportname = reportname.replace(':', '-') # 替换冒号
|
||||
shiyoujiao_lvyong_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time,
|
||||
reportname=reportname, sqlitedb=sqlitedb),
|
||||
shiyoujiao_puhuo_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time,
|
||||
reportname=reportname, sqlitedb=sqlitedb),
|
||||
|
||||
logger.info('制作报告end')
|
||||
logger.info('模型训练完成')
|
||||
|
@ -2807,6 +2807,325 @@ def shiyoujiao_lvyong_export_pdf(num_indicators=475, num_models=21, num_dayindic
|
||||
print(f"请求超时: {e}")
|
||||
|
||||
|
||||
@exception_logger
|
||||
def shiyoujiao_puhuo_export_pdf(num_indicators=475, num_models=21, num_dayindicator=202, inputsize=5, dataset='dataset', time='2024-07-30', reportname='report.pdf', sqlitedb='jbsh_yuanyou.db'):
|
||||
global y
|
||||
# 创建内容对应的空列表
|
||||
content = list()
|
||||
# 获取特征的近一月值
|
||||
import pandas as pd
|
||||
feature_data_df = pd.read_csv(os.path.join(
|
||||
config.dataset, '指标数据添加时间特征.csv'), parse_dates=['ds']).tail(60)
|
||||
|
||||
def draw_feature_trend(feature_data_df, features):
|
||||
# 画特征近60天的趋势图
|
||||
feature_df = feature_data_df[['ds', 'y']+features]
|
||||
# 遍历X每一列,和yy画散点图 ,
|
||||
|
||||
for i, col in enumerate(features):
|
||||
# try:
|
||||
print(f'正在绘制第{i+1}个特征{col}与价格散点图...')
|
||||
if col not in ['ds', 'y']:
|
||||
fig, ax1 = plt.subplots(figsize=(10, 6))
|
||||
# 在第一个坐标轴上绘制数据
|
||||
sns.lineplot(data=feature_df, x='ds', y='y', ax=ax1, color='b')
|
||||
ax1.set_xlabel('日期')
|
||||
ax1.set_ylabel('y', color='b')
|
||||
ax1.tick_params('y', colors='b')
|
||||
# 在 ax1 上添加文本显示值,添加一定的偏移避免值与曲线重叠
|
||||
for j in range(1, len(feature_df), 2):
|
||||
value = feature_df['y'].iloc[j]
|
||||
date = feature_df['ds'].iloc[j]
|
||||
offset = 1.001
|
||||
ax1.text(date, value * offset, str(round(value, 2)),
|
||||
ha='center', va='bottom', color='b', fontsize=10)
|
||||
# 创建第二个坐标轴
|
||||
ax2 = ax1.twinx()
|
||||
# 在第二个坐标轴上绘制数据
|
||||
sns.lineplot(data=feature_df, x='ds', y=col, ax=ax2, color='r')
|
||||
ax2.set_ylabel(col, color='r')
|
||||
ax2.tick_params('y', colors='r')
|
||||
# 在 ax2 上添加文本显示值,添加一定的偏移避免值与曲线重叠
|
||||
for j in range(0, len(feature_df), 2):
|
||||
value = feature_df[col].iloc[j]
|
||||
date = feature_df['ds'].iloc[j]
|
||||
offset = 1.0003
|
||||
ax2.text(date, value * offset, str(round(value, 2)),
|
||||
ha='center', va='bottom', color='r', fontsize=10)
|
||||
# 添加标题
|
||||
plt.title(col)
|
||||
# 设置横坐标为日期格式并自动调整
|
||||
locator = mdates.AutoDateLocator()
|
||||
formatter = mdates.AutoDateFormatter(locator)
|
||||
ax1.xaxis.set_major_locator(locator)
|
||||
ax1.xaxis.set_major_formatter(formatter)
|
||||
# 文件名特殊字符处理
|
||||
col = col.replace('*', '-')
|
||||
col = col.replace(':', '-')
|
||||
col = col.replace(r'/', '-')
|
||||
col = col.replace(r'>', '-')
|
||||
col = col.replace(r'<', '-')
|
||||
plt.savefig(os.path.join(config.dataset, f'{col}与价格散点图.png'))
|
||||
content.append(Graphs.draw_img(
|
||||
os.path.join(config.dataset, f'{col}与价格散点图.png')))
|
||||
plt.close()
|
||||
# except Exception as e:
|
||||
# print(f'绘制第{i+1}个特征{col}与价格散点图时出错:{e}')
|
||||
|
||||
# 添加标题
|
||||
content.append(Graphs.draw_title('石油焦铝用渠道'))
|
||||
|
||||
# 预测结果
|
||||
content.append(Graphs.draw_little_title('一、预测结果:'))
|
||||
# 添加历史走势及预测价格的走势图片
|
||||
content.append(Graphs.draw_img(
|
||||
os.path.join(config.dataset, '历史价格-预测值.png')))
|
||||
# 波动率画图逻辑
|
||||
content.append(Graphs.draw_text('图示说明:'))
|
||||
content.append(Graphs.draw_text(
|
||||
' 确定置信区间:设置残差置信阈值,以每周最佳模型为基准,选取在置信区间的预测值作为置信区间;'))
|
||||
|
||||
# 取df中y列为空的行
|
||||
import pandas as pd
|
||||
df = pd.read_csv(os.path.join(
|
||||
config.dataset, 'predict.csv'), encoding='gbk')
|
||||
df_true = pd.read_csv(os.path.join(
|
||||
config.dataset, '指标数据添加时间特征.csv'), encoding='utf-8') # 获取预测日期对应的真实值
|
||||
df_true = df_true[['ds', 'y']]
|
||||
eval_df = pd.read_csv(os.path.join(
|
||||
config.dataset, 'model_evaluation.csv'), encoding='utf-8')
|
||||
# 按评估指标排序,取前五
|
||||
fivemodels_list = eval_df['模型(Model)'].values # 列表形式,后面当作列名索引使用
|
||||
# 取 fivemodels_list 和 ds 列
|
||||
df = df[['ds'] + fivemodels_list.tolist()]
|
||||
# 拼接预测日期对应的真实值
|
||||
df = pd.merge(df, df_true, on='ds', how='left')
|
||||
# 删除全部为nan的列
|
||||
df = df.dropna(how='all', axis=1)
|
||||
# 选择除 'ds' 列外的数值列,并进行类型转换和四舍五入
|
||||
num_cols = [col for col in df.columns if col !=
|
||||
'ds' and pd.api.types.is_numeric_dtype(df[col])]
|
||||
for col in num_cols:
|
||||
df[col] = df[col].astype(float).round(2)
|
||||
# 添加最大值、最小值、平均值三列
|
||||
df['平均值'] = df[num_cols].mean(axis=1).round(2)
|
||||
df['最大值'] = df[num_cols].max(axis=1)
|
||||
df['最小值'] = df[num_cols].min(axis=1)
|
||||
# df转置
|
||||
df = df.T
|
||||
# df重置索引
|
||||
df = df.reset_index()
|
||||
# 添加预测值表格
|
||||
data = df.values.tolist()
|
||||
col_width = 500/len(df.columns)
|
||||
content.append(Graphs.draw_table(col_width, *data))
|
||||
content.append(Graphs.draw_little_title('二、上一预测周期偏差率分析:'))
|
||||
df = pd.read_csv(os.path.join(
|
||||
config.dataset, 'testandpredict_groupby.csv'), encoding='utf-8')
|
||||
df4 = df.copy() # 计算偏差率使用
|
||||
# 去掉created_dt 列
|
||||
df4 = df4.drop(columns=['created_dt'])
|
||||
# 计算模型偏差率
|
||||
# 计算各列对于y列的差值百分比
|
||||
df3 = pd.DataFrame() # 存储偏差率
|
||||
|
||||
# 删除有null的行
|
||||
df4 = df4.dropna()
|
||||
df3['ds'] = df4['ds']
|
||||
for col in fivemodels_list:
|
||||
df3[col] = round(abs(df4[col] - df4['y']) / df4['y'] * 100, 2)
|
||||
# 找出决定系数前五的偏差率
|
||||
df3 = df3[['ds']+fivemodels_list.tolist()][-inputsize:]
|
||||
# 找出上一预测区间的时间
|
||||
stime = df3['ds'].iloc[0]
|
||||
etime = df3['ds'].iloc[-1]
|
||||
# 添加偏差率表格
|
||||
fivemodels = '、'.join(eval_df['模型(Model)'].values[:5]) # 字符串形式,后面写入字符串使用
|
||||
content.append(Graphs.draw_text(
|
||||
f'预测使用了{num_models}个模型进行训练,使用评估结果MAE前五的模型分别是 {fivemodels} ,模型上一预测区间 {stime} -- {etime}的偏差率(%)分别是:'))
|
||||
# # 添加偏差率表格
|
||||
df3 = df3.T
|
||||
df3 = df3.reset_index()
|
||||
data = df3.values.tolist()
|
||||
col_width = 500/len(df3.columns)
|
||||
content.append(Graphs.draw_table(col_width, *data))
|
||||
|
||||
content.append(Graphs.draw_little_title('上一周预测准确率:'))
|
||||
df4 = sqlitedb.select_data('accuracy_rote', order_by='结束日期 desc', limit=1)
|
||||
df4 = df4.T
|
||||
df4 = df4.reset_index()
|
||||
df4 = df4.T
|
||||
data = df4.values.tolist()
|
||||
col_width = 500/len(df4.columns)
|
||||
content.append(Graphs.draw_table(col_width, *data))
|
||||
|
||||
content.append(Graphs.draw_little_title('三、预测过程解析:'))
|
||||
# 特征、模型、参数配置
|
||||
content.append(Graphs.draw_little_title('模型选择:'))
|
||||
content.append(Graphs.draw_text(
|
||||
f'本次预测使用了一个专门收集时间序列的NeuralForecast库中的{num_models}个模型:'))
|
||||
content.append(Graphs.draw_text(f'使用40天的数据预测未来{inputsize}天的数据。'))
|
||||
content.append(Graphs.draw_little_title('指标情况:'))
|
||||
with open(os.path.join(config.dataset, '特征频度统计.txt'), encoding='utf-8') as f:
|
||||
for line in f.readlines():
|
||||
content.append(Graphs.draw_text(line))
|
||||
|
||||
data = pd.read_csv(os.path.join(config.dataset, '指标数据添加时间特征.csv'),
|
||||
encoding='utf-8') # 计算相关系数用
|
||||
df_zhibiaofenlei = loadcsv(os.path.join(
|
||||
config.dataset, '特征处理后的指标名称及分类.csv')) # 气泡图用
|
||||
df_zhibiaoshuju = data.copy() # 气泡图用
|
||||
|
||||
# 绘制特征相关气泡图
|
||||
|
||||
grouped = df_zhibiaofenlei.groupby('指标分类')
|
||||
grouped_corr = pd.DataFrame(columns=['指标分类', '指标数量', '相关性总和'])
|
||||
|
||||
content.append(Graphs.draw_little_title('按指标分类分别与预测目标进行皮尔逊相关系数分析:'))
|
||||
content.append(Graphs.draw_text('''皮尔逊相关系数说明:'''))
|
||||
content.append(Graphs.draw_text('''衡量两个特征之间的线性相关性。'''))
|
||||
content.append(Graphs.draw_text('''
|
||||
相关系数为1:表示两个变量之间存在完全正向的线性关系,即当一个变量增加时,另一个变量也相应增加,且变化是完全一致的。'''))
|
||||
content.append(Graphs.draw_text(
|
||||
'''相关系数为-1:表示两个变量之间存在完全负向的线性关系,即当一个变量增加时,另一个变量会相应减少,且变化是完全相反的'''))
|
||||
content.append(Graphs.draw_text(
|
||||
'''相关系数接近0:表示两个变量之间不存在线性关系,即它们的变化不会随着对方的变化而变化。'''))
|
||||
for name, group in grouped:
|
||||
cols = group['指标名称'].tolist()
|
||||
config.logger.info(f'开始绘制{name}类指标的相关性直方图')
|
||||
cols_subset = cols
|
||||
feature_names = ['y'] + cols_subset
|
||||
correlation_matrix = df_zhibiaoshuju[feature_names].corr()['y']
|
||||
|
||||
# 绘制特征相关性直方分布图
|
||||
plt.figure(figsize=(10, 8))
|
||||
sns.histplot(correlation_matrix.values.flatten(),
|
||||
bins=20, kde=True, color='skyblue')
|
||||
plt.title(f'{name}类指标(共{len(cols_subset)}个)相关性直方分布图')
|
||||
plt.xlabel('相关系数')
|
||||
plt.ylabel('频数')
|
||||
plt.savefig(os.path.join(
|
||||
config.dataset, f'{name}类指标相关性直方分布图.png'), bbox_inches='tight')
|
||||
plt.close()
|
||||
content.append(Graphs.draw_img(
|
||||
os.path.join(config.dataset, f'{name}类指标相关性直方分布图.png')))
|
||||
content.append(Graphs.draw_text(
|
||||
f'{name}类指标(共{len(cols_subset)}个)的相关性直方分布图如上所示。'))
|
||||
# 相关性大于0的特征
|
||||
positive_corr_features = correlation_matrix[correlation_matrix > 0].sort_values(
|
||||
ascending=False).index.tolist()[1:]
|
||||
|
||||
print(f'{name}下正相关的特征值有:', positive_corr_features)
|
||||
if len(positive_corr_features) > 5:
|
||||
positive_corr_features = positive_corr_features[0:5]
|
||||
content.append(Graphs.draw_text(
|
||||
f'{name}类指标中,与预测目标y正相关前五的特征有:{positive_corr_features}'))
|
||||
draw_feature_trend(feature_data_df, positive_corr_features)
|
||||
elif len(positive_corr_features) == 0:
|
||||
pass
|
||||
else:
|
||||
positive_corr_features = positive_corr_features
|
||||
content.append(Graphs.draw_text(
|
||||
f'其中,与预测目标y正相关的特征有:{positive_corr_features}'))
|
||||
draw_feature_trend(feature_data_df, positive_corr_features)
|
||||
|
||||
# 相关性小于0的特征
|
||||
negative_corr_features = correlation_matrix[correlation_matrix < 0].sort_values(
|
||||
ascending=True).index.tolist()
|
||||
|
||||
print(f'{name}下负相关的特征值有:', negative_corr_features)
|
||||
if len(negative_corr_features) > 5:
|
||||
negative_corr_features = negative_corr_features[:5]
|
||||
content.append(Graphs.draw_text(
|
||||
f'与预测目标y负相关前五的特征有:{negative_corr_features}'))
|
||||
draw_feature_trend(feature_data_df, negative_corr_features)
|
||||
elif len(negative_corr_features) == 0:
|
||||
pass
|
||||
else:
|
||||
content.append(Graphs.draw_text(
|
||||
f'{name}类指标中,与预测目标y负相关的特征有:{negative_corr_features}'))
|
||||
draw_feature_trend(feature_data_df, negative_corr_features)
|
||||
# 计算correlation_sum 第一行的相关性的绝对值的总和
|
||||
correlation_sum = correlation_matrix.abs().sum()
|
||||
config.logger.info(f'{name}类指标的相关性总和为:{correlation_sum}')
|
||||
# 分组的相关性总和拼接到grouped_corr
|
||||
goup_corr = pd.DataFrame(
|
||||
{'指标分类': [name], '指标数量': [len(cols_subset)], '相关性总和': [correlation_sum]})
|
||||
grouped_corr = pd.concat(
|
||||
[grouped_corr, goup_corr], axis=0, ignore_index=True)
|
||||
|
||||
# 绘制相关性总和的气泡图
|
||||
config.logger.info(f'开始绘制相关性总和的气泡图')
|
||||
plt.figure(figsize=(10, 10))
|
||||
sns.scatterplot(data=grouped_corr, x='相关性总和', y='指标数量', size='相关性总和', sizes=(
|
||||
grouped_corr['相关性总和'].min()*5, grouped_corr['相关性总和'].max()*5), hue='指标分类', palette='viridis')
|
||||
plt.title('指标分类相关性总和的气泡图')
|
||||
plt.ylabel('数量')
|
||||
plt.savefig(os.path.join(config.dataset, '指标分类相关性总和的气泡图.png'),
|
||||
bbox_inches='tight')
|
||||
plt.close()
|
||||
content.append(Graphs.draw_img(os.path.join(
|
||||
config.dataset, '指标分类相关性总和的气泡图.png')))
|
||||
content.append(Graphs.draw_text(
|
||||
'气泡图中,横轴为指标分类,纵轴为指标分类下的特征数量,气泡的面积越大表示该分类中特征的相关系数和越大。'))
|
||||
config.logger.info(f'绘制相关性总和的气泡图结束')
|
||||
content.append(Graphs.draw_little_title('模型选择:'))
|
||||
content.append(Graphs.draw_text(
|
||||
f'预测使用了{num_models}个模型进行训练拟合,通过评估指标MAE从小到大排列,前5个模型的简介如下:'))
|
||||
# 读取模型简介
|
||||
with open(os.path.join(config.dataset, 'model_introduction.txt'), 'r', encoding='utf-8') as f:
|
||||
for line in f:
|
||||
line_split = line.strip().split('--')
|
||||
if line_split[0] in fivemodels_list:
|
||||
for introduction in line_split:
|
||||
content.append(Graphs.draw_text(introduction))
|
||||
content.append(Graphs.draw_little_title('模型评估:'))
|
||||
df = pd.read_csv(os.path.join(
|
||||
config.dataset, 'model_evaluation.csv'), encoding='utf-8')
|
||||
# 判断 df 的数值列转为float
|
||||
for col in eval_df.columns:
|
||||
if col not in ['模型(Model)']:
|
||||
eval_df[col] = eval_df[col].astype(float)
|
||||
eval_df[col] = eval_df[col].round(3)
|
||||
# 筛选 fivemodels_list.tolist() 的行
|
||||
eval_df = eval_df[eval_df['模型(Model)'].isin(fivemodels_list)]
|
||||
# df转置
|
||||
eval_df = eval_df.T
|
||||
# df重置索引
|
||||
eval_df = eval_df.reset_index()
|
||||
eval_df = eval_df.T
|
||||
# # 添加表格
|
||||
data = eval_df.values.tolist()
|
||||
col_width = 500/len(eval_df.columns)
|
||||
content.append(Graphs.draw_table(col_width, *data))
|
||||
content.append(Graphs.draw_text('评估指标释义:'))
|
||||
content.append(Graphs.draw_text(
|
||||
'1. 均方根误差(RMSE):均方根误差是衡量预测值与实际值之间误差的一种方法,取值越小,误差越小,预测效果越好。'))
|
||||
content.append(Graphs.draw_text(
|
||||
'2. 平均绝对误差(MAE):平均绝对误差是衡量预测值与实际值之间误差的一种方法,取值越小,误差越小,预测效果越好。'))
|
||||
content.append(Graphs.draw_text(
|
||||
'3. 平均平方误差(MSE):平均平方误差是衡量预测值与实际值之间误差的一种方法,取值越小,误差越小,预测效果越好。'))
|
||||
content.append(Graphs.draw_text('模型拟合:'))
|
||||
# 添加图片
|
||||
content.append(Graphs.draw_img(
|
||||
os.path.join(config.dataset, '预测值与真实值对比图.png')))
|
||||
# 生成pdf文件
|
||||
doc = SimpleDocTemplate(os.path.join(
|
||||
config.dataset, reportname), pagesize=letter)
|
||||
doc.build(content)
|
||||
# pdf 上传到数字化信息平台
|
||||
try:
|
||||
if config.is_update_report:
|
||||
with open(os.path.join(config.dataset, reportname), 'rb') as f:
|
||||
base64_data = base64.b64encode(f.read()).decode('utf-8')
|
||||
upload_data["data"]["fileBase64"] = base64_data
|
||||
upload_data["data"]["fileName"] = reportname
|
||||
token = get_head_auth_report()
|
||||
upload_report_data(token, upload_data)
|
||||
except TimeoutError as e:
|
||||
print(f"请求超时: {e}")
|
||||
|
||||
|
||||
@exception_logger
|
||||
def pp_export_pdf(num_indicators=475, num_models=21, num_dayindicator=202, inputsize=5, dataset='dataset', time='2024-07-30', reportname='report.pdf', sqlitedb='jbsh_yuanyou.db'):
|
||||
# 创建内容对应的空列表
|
||||
|
Loading…
Reference in New Issue
Block a user