普货报告

This commit is contained in:
workpc 2025-03-26 14:41:03 +08:00
parent 89ac2b4531
commit c92f3925d3
2 changed files with 323 additions and 4 deletions

View File

@ -1,9 +1,9 @@
# 读取配置
from lib.dataread import *
from config_shiyoujiao_lvyong import *
from config_shiyoujiao_puhuo import *
from lib.tools import SendMail, exception_logger
from models.nerulforcastmodels import ex_Model, model_losss, shiyoujiao_lvyong_export_pdf
from models.nerulforcastmodels import ex_Model, model_losss, shiyoujiao_puhuo_export_pdf
import datetime
import torch
torch.set_float32_matmul_precision("high")
@ -425,8 +425,8 @@ def predict_main():
reportname = '石油焦大模型普货渠道.pdf' # 报告文件名
# reportname = f'石油焦大模型普货日度预测--{end_time}.pdf' # 报告文件名
# reportname = reportname.replace(':', '-') # 替换冒号
shiyoujiao_lvyong_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time,
reportname=reportname, sqlitedb=sqlitedb),
shiyoujiao_puhuo_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time,
reportname=reportname, sqlitedb=sqlitedb),
logger.info('制作报告end')
logger.info('模型训练完成')

View File

@ -2807,6 +2807,325 @@ def shiyoujiao_lvyong_export_pdf(num_indicators=475, num_models=21, num_dayindic
print(f"请求超时: {e}")
@exception_logger
def shiyoujiao_puhuo_export_pdf(num_indicators=475, num_models=21, num_dayindicator=202, inputsize=5, dataset='dataset', time='2024-07-30', reportname='report.pdf', sqlitedb='jbsh_yuanyou.db'):
global y
# 创建内容对应的空列表
content = list()
# 获取特征的近一月值
import pandas as pd
feature_data_df = pd.read_csv(os.path.join(
config.dataset, '指标数据添加时间特征.csv'), parse_dates=['ds']).tail(60)
def draw_feature_trend(feature_data_df, features):
# 画特征近60天的趋势图
feature_df = feature_data_df[['ds', 'y']+features]
# 遍历X每一列和yy画散点图
for i, col in enumerate(features):
# try:
print(f'正在绘制第{i+1}个特征{col}与价格散点图...')
if col not in ['ds', 'y']:
fig, ax1 = plt.subplots(figsize=(10, 6))
# 在第一个坐标轴上绘制数据
sns.lineplot(data=feature_df, x='ds', y='y', ax=ax1, color='b')
ax1.set_xlabel('日期')
ax1.set_ylabel('y', color='b')
ax1.tick_params('y', colors='b')
# 在 ax1 上添加文本显示值,添加一定的偏移避免值与曲线重叠
for j in range(1, len(feature_df), 2):
value = feature_df['y'].iloc[j]
date = feature_df['ds'].iloc[j]
offset = 1.001
ax1.text(date, value * offset, str(round(value, 2)),
ha='center', va='bottom', color='b', fontsize=10)
# 创建第二个坐标轴
ax2 = ax1.twinx()
# 在第二个坐标轴上绘制数据
sns.lineplot(data=feature_df, x='ds', y=col, ax=ax2, color='r')
ax2.set_ylabel(col, color='r')
ax2.tick_params('y', colors='r')
# 在 ax2 上添加文本显示值,添加一定的偏移避免值与曲线重叠
for j in range(0, len(feature_df), 2):
value = feature_df[col].iloc[j]
date = feature_df['ds'].iloc[j]
offset = 1.0003
ax2.text(date, value * offset, str(round(value, 2)),
ha='center', va='bottom', color='r', fontsize=10)
# 添加标题
plt.title(col)
# 设置横坐标为日期格式并自动调整
locator = mdates.AutoDateLocator()
formatter = mdates.AutoDateFormatter(locator)
ax1.xaxis.set_major_locator(locator)
ax1.xaxis.set_major_formatter(formatter)
# 文件名特殊字符处理
col = col.replace('*', '-')
col = col.replace(':', '-')
col = col.replace(r'/', '-')
col = col.replace(r'>', '-')
col = col.replace(r'<', '-')
plt.savefig(os.path.join(config.dataset, f'{col}与价格散点图.png'))
content.append(Graphs.draw_img(
os.path.join(config.dataset, f'{col}与价格散点图.png')))
plt.close()
# except Exception as e:
# print(f'绘制第{i+1}个特征{col}与价格散点图时出错:{e}')
# 添加标题
content.append(Graphs.draw_title('石油焦铝用渠道'))
# 预测结果
content.append(Graphs.draw_little_title('一、预测结果:'))
# 添加历史走势及预测价格的走势图片
content.append(Graphs.draw_img(
os.path.join(config.dataset, '历史价格-预测值.png')))
# 波动率画图逻辑
content.append(Graphs.draw_text('图示说明:'))
content.append(Graphs.draw_text(
' 确定置信区间:设置残差置信阈值,以每周最佳模型为基准,选取在置信区间的预测值作为置信区间;'))
# 取df中y列为空的行
import pandas as pd
df = pd.read_csv(os.path.join(
config.dataset, 'predict.csv'), encoding='gbk')
df_true = pd.read_csv(os.path.join(
config.dataset, '指标数据添加时间特征.csv'), encoding='utf-8') # 获取预测日期对应的真实值
df_true = df_true[['ds', 'y']]
eval_df = pd.read_csv(os.path.join(
config.dataset, 'model_evaluation.csv'), encoding='utf-8')
# 按评估指标排序,取前五
fivemodels_list = eval_df['模型(Model)'].values # 列表形式,后面当作列名索引使用
# 取 fivemodels_list 和 ds 列
df = df[['ds'] + fivemodels_list.tolist()]
# 拼接预测日期对应的真实值
df = pd.merge(df, df_true, on='ds', how='left')
# 删除全部为nan的列
df = df.dropna(how='all', axis=1)
# 选择除 'ds' 列外的数值列,并进行类型转换和四舍五入
num_cols = [col for col in df.columns if col !=
'ds' and pd.api.types.is_numeric_dtype(df[col])]
for col in num_cols:
df[col] = df[col].astype(float).round(2)
# 添加最大值、最小值、平均值三列
df['平均值'] = df[num_cols].mean(axis=1).round(2)
df['最大值'] = df[num_cols].max(axis=1)
df['最小值'] = df[num_cols].min(axis=1)
# df转置
df = df.T
# df重置索引
df = df.reset_index()
# 添加预测值表格
data = df.values.tolist()
col_width = 500/len(df.columns)
content.append(Graphs.draw_table(col_width, *data))
content.append(Graphs.draw_little_title('二、上一预测周期偏差率分析:'))
df = pd.read_csv(os.path.join(
config.dataset, 'testandpredict_groupby.csv'), encoding='utf-8')
df4 = df.copy() # 计算偏差率使用
# 去掉created_dt 列
df4 = df4.drop(columns=['created_dt'])
# 计算模型偏差率
# 计算各列对于y列的差值百分比
df3 = pd.DataFrame() # 存储偏差率
# 删除有null的行
df4 = df4.dropna()
df3['ds'] = df4['ds']
for col in fivemodels_list:
df3[col] = round(abs(df4[col] - df4['y']) / df4['y'] * 100, 2)
# 找出决定系数前五的偏差率
df3 = df3[['ds']+fivemodels_list.tolist()][-inputsize:]
# 找出上一预测区间的时间
stime = df3['ds'].iloc[0]
etime = df3['ds'].iloc[-1]
# 添加偏差率表格
fivemodels = ''.join(eval_df['模型(Model)'].values[:5]) # 字符串形式,后面写入字符串使用
content.append(Graphs.draw_text(
f'预测使用了{num_models}个模型进行训练使用评估结果MAE前五的模型分别是 {fivemodels} ,模型上一预测区间 {stime} -- {etime}的偏差率(%)分别是:'))
# # 添加偏差率表格
df3 = df3.T
df3 = df3.reset_index()
data = df3.values.tolist()
col_width = 500/len(df3.columns)
content.append(Graphs.draw_table(col_width, *data))
content.append(Graphs.draw_little_title('上一周预测准确率:'))
df4 = sqlitedb.select_data('accuracy_rote', order_by='结束日期 desc', limit=1)
df4 = df4.T
df4 = df4.reset_index()
df4 = df4.T
data = df4.values.tolist()
col_width = 500/len(df4.columns)
content.append(Graphs.draw_table(col_width, *data))
content.append(Graphs.draw_little_title('三、预测过程解析:'))
# 特征、模型、参数配置
content.append(Graphs.draw_little_title('模型选择:'))
content.append(Graphs.draw_text(
f'本次预测使用了一个专门收集时间序列的NeuralForecast库中的{num_models}个模型:'))
content.append(Graphs.draw_text(f'使用40天的数据预测未来{inputsize}天的数据。'))
content.append(Graphs.draw_little_title('指标情况:'))
with open(os.path.join(config.dataset, '特征频度统计.txt'), encoding='utf-8') as f:
for line in f.readlines():
content.append(Graphs.draw_text(line))
data = pd.read_csv(os.path.join(config.dataset, '指标数据添加时间特征.csv'),
encoding='utf-8') # 计算相关系数用
df_zhibiaofenlei = loadcsv(os.path.join(
config.dataset, '特征处理后的指标名称及分类.csv')) # 气泡图用
df_zhibiaoshuju = data.copy() # 气泡图用
# 绘制特征相关气泡图
grouped = df_zhibiaofenlei.groupby('指标分类')
grouped_corr = pd.DataFrame(columns=['指标分类', '指标数量', '相关性总和'])
content.append(Graphs.draw_little_title('按指标分类分别与预测目标进行皮尔逊相关系数分析:'))
content.append(Graphs.draw_text('''皮尔逊相关系数说明:'''))
content.append(Graphs.draw_text('''衡量两个特征之间的线性相关性。'''))
content.append(Graphs.draw_text('''
相关系数为1表示两个变量之间存在完全正向的线性关系即当一个变量增加时另一个变量也相应增加且变化是完全一致的'''))
content.append(Graphs.draw_text(
'''相关系数为-1表示两个变量之间存在完全负向的线性关系即当一个变量增加时另一个变量会相应减少且变化是完全相反的'''))
content.append(Graphs.draw_text(
'''相关系数接近0表示两个变量之间不存在线性关系即它们的变化不会随着对方的变化而变化。'''))
for name, group in grouped:
cols = group['指标名称'].tolist()
config.logger.info(f'开始绘制{name}类指标的相关性直方图')
cols_subset = cols
feature_names = ['y'] + cols_subset
correlation_matrix = df_zhibiaoshuju[feature_names].corr()['y']
# 绘制特征相关性直方分布图
plt.figure(figsize=(10, 8))
sns.histplot(correlation_matrix.values.flatten(),
bins=20, kde=True, color='skyblue')
plt.title(f'{name}类指标(共{len(cols_subset)}个)相关性直方分布图')
plt.xlabel('相关系数')
plt.ylabel('频数')
plt.savefig(os.path.join(
config.dataset, f'{name}类指标相关性直方分布图.png'), bbox_inches='tight')
plt.close()
content.append(Graphs.draw_img(
os.path.join(config.dataset, f'{name}类指标相关性直方分布图.png')))
content.append(Graphs.draw_text(
f'{name}类指标(共{len(cols_subset)}个)的相关性直方分布图如上所示。'))
# 相关性大于0的特征
positive_corr_features = correlation_matrix[correlation_matrix > 0].sort_values(
ascending=False).index.tolist()[1:]
print(f'{name}下正相关的特征值有:', positive_corr_features)
if len(positive_corr_features) > 5:
positive_corr_features = positive_corr_features[0:5]
content.append(Graphs.draw_text(
f'{name}类指标中与预测目标y正相关前五的特征有{positive_corr_features}'))
draw_feature_trend(feature_data_df, positive_corr_features)
elif len(positive_corr_features) == 0:
pass
else:
positive_corr_features = positive_corr_features
content.append(Graphs.draw_text(
f'其中与预测目标y正相关的特征有{positive_corr_features}'))
draw_feature_trend(feature_data_df, positive_corr_features)
# 相关性小于0的特征
negative_corr_features = correlation_matrix[correlation_matrix < 0].sort_values(
ascending=True).index.tolist()
print(f'{name}下负相关的特征值有:', negative_corr_features)
if len(negative_corr_features) > 5:
negative_corr_features = negative_corr_features[:5]
content.append(Graphs.draw_text(
f'与预测目标y负相关前五的特征有{negative_corr_features}'))
draw_feature_trend(feature_data_df, negative_corr_features)
elif len(negative_corr_features) == 0:
pass
else:
content.append(Graphs.draw_text(
f'{name}类指标中与预测目标y负相关的特征有{negative_corr_features}'))
draw_feature_trend(feature_data_df, negative_corr_features)
# 计算correlation_sum 第一行的相关性的绝对值的总和
correlation_sum = correlation_matrix.abs().sum()
config.logger.info(f'{name}类指标的相关性总和为:{correlation_sum}')
# 分组的相关性总和拼接到grouped_corr
goup_corr = pd.DataFrame(
{'指标分类': [name], '指标数量': [len(cols_subset)], '相关性总和': [correlation_sum]})
grouped_corr = pd.concat(
[grouped_corr, goup_corr], axis=0, ignore_index=True)
# 绘制相关性总和的气泡图
config.logger.info(f'开始绘制相关性总和的气泡图')
plt.figure(figsize=(10, 10))
sns.scatterplot(data=grouped_corr, x='相关性总和', y='指标数量', size='相关性总和', sizes=(
grouped_corr['相关性总和'].min()*5, grouped_corr['相关性总和'].max()*5), hue='指标分类', palette='viridis')
plt.title('指标分类相关性总和的气泡图')
plt.ylabel('数量')
plt.savefig(os.path.join(config.dataset, '指标分类相关性总和的气泡图.png'),
bbox_inches='tight')
plt.close()
content.append(Graphs.draw_img(os.path.join(
config.dataset, '指标分类相关性总和的气泡图.png')))
content.append(Graphs.draw_text(
'气泡图中,横轴为指标分类,纵轴为指标分类下的特征数量,气泡的面积越大表示该分类中特征的相关系数和越大。'))
config.logger.info(f'绘制相关性总和的气泡图结束')
content.append(Graphs.draw_little_title('模型选择:'))
content.append(Graphs.draw_text(
f'预测使用了{num_models}个模型进行训练拟合通过评估指标MAE从小到大排列前5个模型的简介如下'))
# 读取模型简介
with open(os.path.join(config.dataset, 'model_introduction.txt'), 'r', encoding='utf-8') as f:
for line in f:
line_split = line.strip().split('--')
if line_split[0] in fivemodels_list:
for introduction in line_split:
content.append(Graphs.draw_text(introduction))
content.append(Graphs.draw_little_title('模型评估:'))
df = pd.read_csv(os.path.join(
config.dataset, 'model_evaluation.csv'), encoding='utf-8')
# 判断 df 的数值列转为float
for col in eval_df.columns:
if col not in ['模型(Model)']:
eval_df[col] = eval_df[col].astype(float)
eval_df[col] = eval_df[col].round(3)
# 筛选 fivemodels_list.tolist() 的行
eval_df = eval_df[eval_df['模型(Model)'].isin(fivemodels_list)]
# df转置
eval_df = eval_df.T
# df重置索引
eval_df = eval_df.reset_index()
eval_df = eval_df.T
# # 添加表格
data = eval_df.values.tolist()
col_width = 500/len(eval_df.columns)
content.append(Graphs.draw_table(col_width, *data))
content.append(Graphs.draw_text('评估指标释义:'))
content.append(Graphs.draw_text(
'1. 均方根误差(RMSE):均方根误差是衡量预测值与实际值之间误差的一种方法,取值越小,误差越小,预测效果越好。'))
content.append(Graphs.draw_text(
'2. 平均绝对误差(MAE):平均绝对误差是衡量预测值与实际值之间误差的一种方法,取值越小,误差越小,预测效果越好。'))
content.append(Graphs.draw_text(
'3. 平均平方误差(MSE):平均平方误差是衡量预测值与实际值之间误差的一种方法,取值越小,误差越小,预测效果越好。'))
content.append(Graphs.draw_text('模型拟合:'))
# 添加图片
content.append(Graphs.draw_img(
os.path.join(config.dataset, '预测值与真实值对比图.png')))
# 生成pdf文件
doc = SimpleDocTemplate(os.path.join(
config.dataset, reportname), pagesize=letter)
doc.build(content)
# pdf 上传到数字化信息平台
try:
if config.is_update_report:
with open(os.path.join(config.dataset, reportname), 'rb') as f:
base64_data = base64.b64encode(f.read()).decode('utf-8')
upload_data["data"]["fileBase64"] = base64_data
upload_data["data"]["fileName"] = reportname
token = get_head_auth_report()
upload_report_data(token, upload_data)
except TimeoutError as e:
print(f"请求超时: {e}")
@exception_logger
def pp_export_pdf(num_indicators=475, num_models=21, num_dayindicator=202, inputsize=5, dataset='dataset', time='2024-07-30', reportname='report.pdf', sqlitedb='jbsh_yuanyou.db'):
# 创建内容对应的空列表