添加雍安环境配置
This commit is contained in:
parent
19f76e6b83
commit
c9c456f750
@ -1,4 +0,0 @@
|
|||||||
@echo on
|
|
||||||
d:
|
|
||||||
cd code/PricePredict/
|
|
||||||
C:/Users/Hello/.conda/envs/predict-py397/python.exe main.py
|
|
@ -1,65 +0,0 @@
|
|||||||
{
|
|
||||||
"cells": [
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 6,
|
|
||||||
"id": "b3cde8ea",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"{'ovx index': '原油波动率', 'dxy curncy': '美元指数', 'C2403128043': 'Brent连1合约价格拟合残差/美元指数', 'C2403150124': 'Brent连1合约价格拟合残差/Brent 连2-连3', 'DOESCRUD Index': '美国商业原油库存', 'FVHCM1 INDEX': '美国取暖油裂解C1', 'doedtprd index': '美国成品油表需', 'CFFDQMMN INDEX': 'WTI管理资金净多持仓', 'C2403083739': 'WTI基金多空持仓比', 'C2404167878': 'WTI基金净持仓COT指标(代码运算)', 'lmcads03 lme comdty': 'LME铜价', 'GC1 COMB Comdty': '黄金连1合约', 'C2404167855': '金油比'}\n"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"data = \"\"\"\n",
|
|
||||||
"ovx index 原油波动率\n",
|
|
||||||
"dxy curncy 美元指数\n",
|
|
||||||
"C2403128043 Brent连1合约价格拟合残差/美元指数\n",
|
|
||||||
"C2403150124 Brent连1合约价格拟合残差/Brent 连2-连3\n",
|
|
||||||
"DOESCRUD Index 美国商业原油库存\n",
|
|
||||||
"FVHCM1 INDEX 美国取暖油裂解C1\n",
|
|
||||||
"doedtprd index 美国成品油表需\n",
|
|
||||||
"CFFDQMMN INDEX WTI管理资金净多持仓\n",
|
|
||||||
"C2403083739 WTI基金多空持仓比\n",
|
|
||||||
"C2404167878 WTI基金净持仓COT指标(代码运算)\n",
|
|
||||||
"lmcads03 lme comdty LME铜价\n",
|
|
||||||
"GC1 COMB Comdty 黄金连1合约\n",
|
|
||||||
"C2404167855 金油比\n",
|
|
||||||
"\"\"\"\n",
|
|
||||||
"\n",
|
|
||||||
"result_dict = {}\n",
|
|
||||||
"lines = data.strip().split('\\n')\n",
|
|
||||||
"for line in lines:\n",
|
|
||||||
" key, value = line.strip().split(' ')\n",
|
|
||||||
" result_dict[key] = value\n",
|
|
||||||
"\n",
|
|
||||||
"print(result_dict)"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"metadata": {
|
|
||||||
"kernelspec": {
|
|
||||||
"display_name": "base",
|
|
||||||
"language": "python",
|
|
||||||
"name": "python3"
|
|
||||||
},
|
|
||||||
"language_info": {
|
|
||||||
"codemirror_mode": {
|
|
||||||
"name": "ipython",
|
|
||||||
"version": 3
|
|
||||||
},
|
|
||||||
"file_extension": ".py",
|
|
||||||
"mimetype": "text/x-python",
|
|
||||||
"name": "python",
|
|
||||||
"nbconvert_exporter": "python",
|
|
||||||
"pygments_lexer": "ipython3",
|
|
||||||
"version": "3.11.7"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"nbformat": 4,
|
|
||||||
"nbformat_minor": 5
|
|
||||||
}
|
|
139
config_jingbo.py
139
config_jingbo.py
@ -197,24 +197,142 @@ ClassifyId = 1214
|
|||||||
|
|
||||||
|
|
||||||
################################################################################################################ 变量定义--测试环境
|
################################################################################################################ 变量定义--测试环境
|
||||||
login_pushreport_url = "http://192.168.100.53:8080/jingbo-dev/api/server/login"
|
# login_pushreport_url = "http://192.168.100.53:8080/jingbo-dev/api/server/login"
|
||||||
upload_url = "http://192.168.100.53:8080/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave"
|
# upload_url = "http://192.168.100.53:8080/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave"
|
||||||
|
# # upload_url = "http://192.168.100.109:8080/jingbo/api/analysis/reportInfo/researchUploadReportSave" # zhaoqiwei
|
||||||
|
# upload_warning_url = "http://192.168.100.53:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/save"
|
||||||
|
# query_data_list_item_nos_url = "http://192.168.100.53:8080/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos"
|
||||||
|
|
||||||
|
# login_data = {
|
||||||
|
# "data": {
|
||||||
|
# "account": "api_test",
|
||||||
|
# # "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456
|
||||||
|
# "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", # 123456
|
||||||
|
# "tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
|
||||||
|
# "terminal": "API"
|
||||||
|
# },
|
||||||
|
# "funcModule": "API",
|
||||||
|
# "funcOperation": "获取token"
|
||||||
|
# }
|
||||||
|
|
||||||
|
# # upload_data = {
|
||||||
|
# # "funcModule":'研究报告信息',
|
||||||
|
# # "funcOperation":'上传原油价格预测报告',
|
||||||
|
# # "data":{
|
||||||
|
# # "ownerAccount":'arui', #报告所属用户账号
|
||||||
|
# # "reportType":'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST
|
||||||
|
# # "fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', #文件名称
|
||||||
|
# # "fileBase64": '' ,#文件内容base64
|
||||||
|
# # "categoryNo":'yyjgycbg', # 研究报告分类编码
|
||||||
|
# # "smartBusinessClassCode":'YCJGYCBG', #分析报告分类编码
|
||||||
|
# # "reportEmployeeCode":"E40116", # 报告人
|
||||||
|
# # "reportDeptCode" :"D0044" ,# 报告部门
|
||||||
|
# # "productGroupCode":"RAW_MATERIAL" # 商品分类
|
||||||
|
# # }
|
||||||
|
# # }
|
||||||
|
|
||||||
|
# upload_data = {
|
||||||
|
# "funcModule":'研究报告信息',
|
||||||
|
# "funcOperation":'上传原油价格预测报告',
|
||||||
|
# "data":{
|
||||||
|
# "ownerAccount":'arui', #报告所属用户账号
|
||||||
|
# "reportType":'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST
|
||||||
|
# "fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', #文件名称
|
||||||
|
# "fileBase64": '' ,#文件内容base64
|
||||||
|
# "categoryNo":'yyjgycbg', # 研究报告分类编码
|
||||||
|
# "smartBusinessClassCode":'1', #分析报告分类编码
|
||||||
|
# "reportEmployeeCode":"E40116", # 报告人
|
||||||
|
# "reportDeptCode" :"D0044" ,# 报告部门
|
||||||
|
# "productGroupCode":"RAW_MATERIAL" # 商品分类
|
||||||
|
# }
|
||||||
|
# }
|
||||||
|
|
||||||
|
|
||||||
|
# warning_data = {
|
||||||
|
# "funcModule":'原油特征停更预警',
|
||||||
|
# "funcOperation":'原油特征停更预警',
|
||||||
|
# "data":{
|
||||||
|
# 'WARNING_TYPE_NAME':'特征数据停更预警',
|
||||||
|
# 'WARNING_CONTENT':'',
|
||||||
|
# 'WARNING_DATE':''
|
||||||
|
# }
|
||||||
|
# }
|
||||||
|
|
||||||
|
# query_data_list_item_nos_data = {
|
||||||
|
# "funcModule": "数据项",
|
||||||
|
# "funcOperation": "查询",
|
||||||
|
# "data": {
|
||||||
|
# "dateStart":"20200101",
|
||||||
|
# "dateEnd":"20241231",
|
||||||
|
# "dataItemNoList":["Brentzdj","Brentzgj"] # 数据项编码,代表 brent最低价和最高价
|
||||||
|
# }
|
||||||
|
# }
|
||||||
|
|
||||||
|
|
||||||
|
# # 北京环境数据库
|
||||||
|
# host = '192.168.101.27'
|
||||||
|
# port = 3306
|
||||||
|
# dbusername ='root'
|
||||||
|
# password = '123456'
|
||||||
|
# dbname = 'jingbo_test'
|
||||||
|
# table_name = 'v_tbl_crude_oil_warning'
|
||||||
|
|
||||||
|
|
||||||
|
# ### 开关
|
||||||
|
# is_train = False # 是否训练
|
||||||
|
# is_debug = False # 是否调试
|
||||||
|
# is_eta = False # 是否使用eta接口
|
||||||
|
# is_market = True # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
|
||||||
|
# is_timefurture = True # 是否使用时间特征
|
||||||
|
# is_fivemodels = False # 是否使用之前保存的最佳的5个模型
|
||||||
|
# is_edbcode = False # 特征使用edbcoding列表中的
|
||||||
|
# is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
|
||||||
|
# is_update_eta = False # 预测结果上传到eta
|
||||||
|
# is_update_report = True # 是否上传报告
|
||||||
|
# is_update_warning_data = False # 是否上传预警数据
|
||||||
|
# is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
|
||||||
|
# is_del_tow_month = True # 是否删除两个月不更新的特征
|
||||||
|
|
||||||
|
|
||||||
|
################################################################################################################ 变量定义--雍安测试环境
|
||||||
|
login_pushreport_url = "http://192.168.100.115:9090/dom-api/api/server/login"
|
||||||
|
upload_url = "http://192.168.100.115:9090/dom-api/api/analysis/reportInfo/researchUploadReportSave"
|
||||||
# upload_url = "http://192.168.100.109:8080/jingbo/api/analysis/reportInfo/researchUploadReportSave" # zhaoqiwei
|
# upload_url = "http://192.168.100.109:8080/jingbo/api/analysis/reportInfo/researchUploadReportSave" # zhaoqiwei
|
||||||
upload_warning_url = "http://192.168.100.53:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/save"
|
upload_warning_url = "http://192.168.100.115:9090/dom-api/api/basicBuiness/crudeOilWarning/save"
|
||||||
query_data_list_item_nos_url = "http://192.168.100.53:8080/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos"
|
query_data_list_item_nos_url = "http://192.168.100.115:9090/dom-api/api/warehouse/dwDataItem/queryDataListItemNos"
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
login_data = {
|
login_data = {
|
||||||
"data": {
|
"data": {
|
||||||
"account": "api_test",
|
"account": "api-dev",
|
||||||
# "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456
|
"password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=",
|
||||||
"password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", # 123456
|
"tenantHashCode": "1eb24ab5a6af12e30daf78af276664f1",
|
||||||
"tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
|
|
||||||
"terminal": "API"
|
"terminal": "API"
|
||||||
},
|
},
|
||||||
"funcModule": "API",
|
"funcModule": "API",
|
||||||
"funcOperation": "获取token"
|
"funcOperation": "获取token"
|
||||||
}
|
}
|
||||||
|
|
||||||
|
# upload_data = {
|
||||||
|
# "funcModule":'研究报告信息',
|
||||||
|
# "funcOperation":'上传原油价格预测报告',
|
||||||
|
# "data":{
|
||||||
|
# "ownerAccount":'arui', #报告所属用户账号
|
||||||
|
# "reportType":'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST
|
||||||
|
# "fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', #文件名称
|
||||||
|
# "fileBase64": '' ,#文件内容base64
|
||||||
|
# "categoryNo":'yyjgycbg', # 研究报告分类编码
|
||||||
|
# "smartBusinessClassCode":'YCJGYCBG', #分析报告分类编码
|
||||||
|
# "reportEmployeeCode":"E40116", # 报告人
|
||||||
|
# "reportDeptCode" :"D0044" ,# 报告部门
|
||||||
|
# "productGroupCode":"RAW_MATERIAL" # 商品分类
|
||||||
|
# }
|
||||||
|
# }
|
||||||
|
|
||||||
upload_data = {
|
upload_data = {
|
||||||
"funcModule":'研究报告信息',
|
"funcModule":'研究报告信息',
|
||||||
"funcOperation":'上传原油价格预测报告',
|
"funcOperation":'上传原油价格预测报告',
|
||||||
@ -224,13 +342,14 @@ upload_data = {
|
|||||||
"fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', #文件名称
|
"fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', #文件名称
|
||||||
"fileBase64": '' ,#文件内容base64
|
"fileBase64": '' ,#文件内容base64
|
||||||
"categoryNo":'yyjgycbg', # 研究报告分类编码
|
"categoryNo":'yyjgycbg', # 研究报告分类编码
|
||||||
"smartBusinessClassCode":'YCJGYCBG', #分析报告分类编码
|
"smartBusinessClassCode":'1', #分析报告分类编码
|
||||||
"reportEmployeeCode":"E40116", # 报告人
|
"reportEmployeeCode":"E40116", # 报告人
|
||||||
"reportDeptCode" :"D0044" ,# 报告部门
|
"reportDeptCode" :"D0044" ,# 报告部门
|
||||||
"productGroupCode":"RAW_MATERIAL" # 商品分类
|
"productGroupCode":"RAW_MATERIAL" # 商品分类
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
warning_data = {
|
warning_data = {
|
||||||
"funcModule":'原油特征停更预警',
|
"funcModule":'原油特征停更预警',
|
||||||
"funcOperation":'原油特征停更预警',
|
"funcOperation":'原油特征停更预警',
|
||||||
@ -271,7 +390,7 @@ is_fivemodels = False # 是否使用之前保存的最佳的5个模型
|
|||||||
is_edbcode = False # 特征使用edbcoding列表中的
|
is_edbcode = False # 特征使用edbcoding列表中的
|
||||||
is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
|
is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
|
||||||
is_update_eta = False # 预测结果上传到eta
|
is_update_eta = False # 预测结果上传到eta
|
||||||
is_update_report = False # 是否上传报告
|
is_update_report = True # 是否上传报告
|
||||||
is_update_warning_data = False # 是否上传预警数据
|
is_update_warning_data = False # 是否上传预警数据
|
||||||
is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
|
is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
|
||||||
is_del_tow_month = True # 是否删除两个月不更新的特征
|
is_del_tow_month = True # 是否删除两个月不更新的特征
|
||||||
|
358
main_yuanyou.py
358
main_yuanyou.py
@ -48,203 +48,203 @@ def predict_main():
|
|||||||
返回:
|
返回:
|
||||||
None
|
None
|
||||||
"""
|
"""
|
||||||
global end_time
|
# global end_time
|
||||||
signature = BinanceAPI(APPID, SECRET)
|
# signature = BinanceAPI(APPID, SECRET)
|
||||||
etadata = EtaReader(signature=signature,
|
# etadata = EtaReader(signature=signature,
|
||||||
classifylisturl=classifylisturl,
|
# classifylisturl=classifylisturl,
|
||||||
classifyidlisturl=classifyidlisturl,
|
# classifyidlisturl=classifyidlisturl,
|
||||||
edbcodedataurl=edbcodedataurl,
|
# edbcodedataurl=edbcodedataurl,
|
||||||
edbcodelist=edbcodelist,
|
# edbcodelist=edbcodelist,
|
||||||
edbdatapushurl=edbdatapushurl,
|
# edbdatapushurl=edbdatapushurl,
|
||||||
edbdeleteurl=edbdeleteurl,
|
# edbdeleteurl=edbdeleteurl,
|
||||||
edbbusinessurl=edbbusinessurl
|
# edbbusinessurl=edbbusinessurl
|
||||||
)
|
# )
|
||||||
# 获取数据
|
# # 获取数据
|
||||||
if is_eta:
|
# if is_eta:
|
||||||
logger.info('从eta获取数据...')
|
# logger.info('从eta获取数据...')
|
||||||
signature = BinanceAPI(APPID, SECRET)
|
# signature = BinanceAPI(APPID, SECRET)
|
||||||
etadata = EtaReader(signature=signature,
|
# etadata = EtaReader(signature=signature,
|
||||||
classifylisturl=classifylisturl,
|
# classifylisturl=classifylisturl,
|
||||||
classifyidlisturl=classifyidlisturl,
|
# classifyidlisturl=classifyidlisturl,
|
||||||
edbcodedataurl=edbcodedataurl,
|
# edbcodedataurl=edbcodedataurl,
|
||||||
edbcodelist=edbcodelist,
|
# edbcodelist=edbcodelist,
|
||||||
edbdatapushurl=edbdatapushurl,
|
# edbdatapushurl=edbdatapushurl,
|
||||||
edbdeleteurl=edbdeleteurl,
|
# edbdeleteurl=edbdeleteurl,
|
||||||
edbbusinessurl=edbbusinessurl,
|
# edbbusinessurl=edbbusinessurl,
|
||||||
)
|
# )
|
||||||
df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_yuanyou_data(data_set=data_set, dataset=dataset) # 原始数据,未处理
|
# df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_yuanyou_data(data_set=data_set, dataset=dataset) # 原始数据,未处理
|
||||||
|
|
||||||
if is_market:
|
# if is_market:
|
||||||
logger.info('从市场信息平台获取数据...')
|
# logger.info('从市场信息平台获取数据...')
|
||||||
try:
|
# try:
|
||||||
df_zhibiaoshuju = get_market_data(end_time,df_zhibiaoshuju)
|
# df_zhibiaoshuju = get_market_data(end_time,df_zhibiaoshuju)
|
||||||
except :
|
# except :
|
||||||
logger.info('从市场信息平台获取数据失败')
|
# logger.info('从市场信息平台获取数据失败')
|
||||||
|
|
||||||
# 保存到xlsx文件的sheet表
|
# # 保存到xlsx文件的sheet表
|
||||||
with pd.ExcelWriter(os.path.join(dataset,data_set)) as file:
|
# with pd.ExcelWriter(os.path.join(dataset,data_set)) as file:
|
||||||
df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False)
|
# df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False)
|
||||||
df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False)
|
# df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False)
|
||||||
|
|
||||||
|
|
||||||
# 数据处理
|
# # 数据处理
|
||||||
df = datachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=y, dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture,
|
# df = datachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=y, dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture,
|
||||||
end_time=end_time)
|
# end_time=end_time)
|
||||||
|
|
||||||
else:
|
# else:
|
||||||
# 读取数据
|
# # 读取数据
|
||||||
logger.info('读取本地数据:' + os.path.join(dataset, data_set))
|
# logger.info('读取本地数据:' + os.path.join(dataset, data_set))
|
||||||
df,df_zhibiaoliebiao = getdata(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj,
|
# df,df_zhibiaoliebiao = getdata(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj,
|
||||||
is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理
|
# is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理
|
||||||
|
|
||||||
# 更改预测列名称
|
# # 更改预测列名称
|
||||||
df.rename(columns={y: 'y'}, inplace=True)
|
# df.rename(columns={y: 'y'}, inplace=True)
|
||||||
|
|
||||||
if is_edbnamelist:
|
# if is_edbnamelist:
|
||||||
df = df[edbnamelist]
|
# df = df[edbnamelist]
|
||||||
df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False)
|
# df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False)
|
||||||
# 保存最新日期的y值到数据库
|
# # 保存最新日期的y值到数据库
|
||||||
# 取第一行数据存储到数据库中
|
# # 取第一行数据存储到数据库中
|
||||||
first_row = df[['ds', 'y']].tail(1)
|
# first_row = df[['ds', 'y']].tail(1)
|
||||||
print(first_row['ds'].values[0])
|
# print(first_row['ds'].values[0])
|
||||||
print(first_row['y'].values[0])
|
# print(first_row['y'].values[0])
|
||||||
# 判断y的类型是否为float
|
# # 判断y的类型是否为float
|
||||||
if not isinstance(first_row['y'].values[0], float):
|
# if not isinstance(first_row['y'].values[0], float):
|
||||||
logger.info(f'{end_time}预测目标数据为空,跳过')
|
# logger.info(f'{end_time}预测目标数据为空,跳过')
|
||||||
return None
|
# return None
|
||||||
|
|
||||||
# 将最新真实值保存到数据库
|
# # 将最新真实值保存到数据库
|
||||||
if not sqlitedb.check_table_exists('trueandpredict'):
|
# if not sqlitedb.check_table_exists('trueandpredict'):
|
||||||
first_row.to_sql('trueandpredict', sqlitedb.connection, index=False)
|
# first_row.to_sql('trueandpredict', sqlitedb.connection, index=False)
|
||||||
else:
|
# else:
|
||||||
for row in first_row.itertuples(index=False):
|
# for row in first_row.itertuples(index=False):
|
||||||
row_dict = row._asdict()
|
# row_dict = row._asdict()
|
||||||
row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S')
|
# row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S')
|
||||||
check_query = sqlitedb.select_data('trueandpredict', where_condition=f"ds = '{row.ds}'")
|
# check_query = sqlitedb.select_data('trueandpredict', where_condition=f"ds = '{row.ds}'")
|
||||||
if len(check_query) > 0:
|
# if len(check_query) > 0:
|
||||||
set_clause = ", ".join([f"{key} = '{value}'" for key, value in row_dict.items()])
|
# set_clause = ", ".join([f"{key} = '{value}'" for key, value in row_dict.items()])
|
||||||
sqlitedb.update_data('trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'")
|
# sqlitedb.update_data('trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'")
|
||||||
continue
|
# continue
|
||||||
sqlitedb.insert_data('trueandpredict', tuple(row_dict.values()), columns=row_dict.keys())
|
# sqlitedb.insert_data('trueandpredict', tuple(row_dict.values()), columns=row_dict.keys())
|
||||||
|
|
||||||
# 更新accuracy表的y值
|
# # 更新accuracy表的y值
|
||||||
if not sqlitedb.check_table_exists('accuracy'):
|
# if not sqlitedb.check_table_exists('accuracy'):
|
||||||
pass
|
# pass
|
||||||
else:
|
# else:
|
||||||
update_y = sqlitedb.select_data('accuracy',where_condition="y is null")
|
# update_y = sqlitedb.select_data('accuracy',where_condition="y is null")
|
||||||
if len(update_y) > 0:
|
# if len(update_y) > 0:
|
||||||
logger.info('更新accuracy表的y值')
|
# logger.info('更新accuracy表的y值')
|
||||||
# 找到update_y 中ds且df中的y的行
|
# # 找到update_y 中ds且df中的y的行
|
||||||
update_y = update_y[update_y['ds']<=end_time]
|
# update_y = update_y[update_y['ds']<=end_time]
|
||||||
logger.info(f'要更新y的信息:{update_y}')
|
# logger.info(f'要更新y的信息:{update_y}')
|
||||||
try:
|
# try:
|
||||||
for row in update_y.itertuples(index=False):
|
# for row in update_y.itertuples(index=False):
|
||||||
row_dict = row._asdict()
|
# row_dict = row._asdict()
|
||||||
yy = df[df['ds']==row_dict['ds']]['y'].values[0]
|
# yy = df[df['ds']==row_dict['ds']]['y'].values[0]
|
||||||
LOW = df[df['ds']==row_dict['ds']]['Brentzdj'].values[0]
|
# LOW = df[df['ds']==row_dict['ds']]['Brentzdj'].values[0]
|
||||||
HIGH = df[df['ds']==row_dict['ds']]['Brentzgj'].values[0]
|
# HIGH = df[df['ds']==row_dict['ds']]['Brentzgj'].values[0]
|
||||||
sqlitedb.update_data('accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'")
|
# sqlitedb.update_data('accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'")
|
||||||
except Exception as e:
|
# except Exception as e:
|
||||||
logger.info(f'更新accuracy表的y值失败:{e}')
|
# logger.info(f'更新accuracy表的y值失败:{e}')
|
||||||
|
|
||||||
import datetime
|
# import datetime
|
||||||
# 判断当前日期是不是周一
|
# # 判断当前日期是不是周一
|
||||||
is_weekday = datetime.datetime.now().weekday() == 0
|
# is_weekday = datetime.datetime.now().weekday() == 0
|
||||||
if is_weekday:
|
# if is_weekday:
|
||||||
logger.info('今天是周一,更新预测模型')
|
# logger.info('今天是周一,更新预测模型')
|
||||||
# 计算最近60天预测残差最低的模型名称
|
# # 计算最近60天预测残差最低的模型名称
|
||||||
model_results = sqlitedb.select_data('trueandpredict', order_by="ds DESC", limit="60")
|
# model_results = sqlitedb.select_data('trueandpredict', order_by="ds DESC", limit="60")
|
||||||
# 删除空值率为40%以上的列
|
# # 删除空值率为40%以上的列
|
||||||
if len(model_results) > 10:
|
# if len(model_results) > 10:
|
||||||
model_results = model_results.dropna(thresh=len(model_results)*0.6,axis=1)
|
# model_results = model_results.dropna(thresh=len(model_results)*0.6,axis=1)
|
||||||
# 删除空行
|
# # 删除空行
|
||||||
model_results = model_results.dropna()
|
# model_results = model_results.dropna()
|
||||||
modelnames = model_results.columns.to_list()[2:]
|
# modelnames = model_results.columns.to_list()[2:]
|
||||||
for col in model_results[modelnames].select_dtypes(include=['object']).columns:
|
# for col in model_results[modelnames].select_dtypes(include=['object']).columns:
|
||||||
model_results[col] = model_results[col].astype(np.float32)
|
# model_results[col] = model_results[col].astype(np.float32)
|
||||||
# 计算每个预测值与真实值之间的偏差率
|
# # 计算每个预测值与真实值之间的偏差率
|
||||||
for model in modelnames:
|
# for model in modelnames:
|
||||||
model_results[f'{model}_abs_error_rate'] = abs(model_results['y'] - model_results[model]) / model_results['y']
|
# model_results[f'{model}_abs_error_rate'] = abs(model_results['y'] - model_results[model]) / model_results['y']
|
||||||
# 获取每行对应的最小偏差率值
|
# # 获取每行对应的最小偏差率值
|
||||||
min_abs_error_rate_values = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)
|
# min_abs_error_rate_values = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)
|
||||||
# 获取每行对应的最小偏差率值对应的列名
|
# # 获取每行对应的最小偏差率值对应的列名
|
||||||
min_abs_error_rate_column_name = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1)
|
# min_abs_error_rate_column_name = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1)
|
||||||
# 将列名索引转换为列名
|
# # 将列名索引转换为列名
|
||||||
min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(lambda x: x.split('_')[0])
|
# min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(lambda x: x.split('_')[0])
|
||||||
# 取出现次数最多的模型名称
|
# # 取出现次数最多的模型名称
|
||||||
most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
|
# most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
|
||||||
logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}")
|
# logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}")
|
||||||
# 保存结果到数据库
|
# # 保存结果到数据库
|
||||||
if not sqlitedb.check_table_exists('most_model'):
|
# if not sqlitedb.check_table_exists('most_model'):
|
||||||
sqlitedb.create_table('most_model', columns="ds datetime, most_common_model TEXT")
|
# sqlitedb.create_table('most_model', columns="ds datetime, most_common_model TEXT")
|
||||||
sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
|
# sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
|
||||||
|
|
||||||
try:
|
# try:
|
||||||
if is_weekday:
|
# if is_weekday:
|
||||||
# if True:
|
# # if True:
|
||||||
logger.info('今天是周一,发送特征预警')
|
# logger.info('今天是周一,发送特征预警')
|
||||||
# 上传预警信息到数据库
|
# # 上传预警信息到数据库
|
||||||
warning_data_df = df_zhibiaoliebiao.copy()
|
# warning_data_df = df_zhibiaoliebiao.copy()
|
||||||
warning_data_df = warning_data_df[warning_data_df['停更周期']> 3 ][['指标名称', '指标id', '频度','更新周期','指标来源','最后更新时间','停更周期']]
|
# warning_data_df = warning_data_df[warning_data_df['停更周期']> 3 ][['指标名称', '指标id', '频度','更新周期','指标来源','最后更新时间','停更周期']]
|
||||||
# 重命名列名
|
# # 重命名列名
|
||||||
warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY', '更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'})
|
# warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY', '更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'})
|
||||||
from sqlalchemy import create_engine
|
# from sqlalchemy import create_engine
|
||||||
import urllib
|
# import urllib
|
||||||
global password
|
# global password
|
||||||
if '@' in password:
|
# if '@' in password:
|
||||||
password = urllib.parse.quote_plus(password)
|
# password = urllib.parse.quote_plus(password)
|
||||||
|
|
||||||
engine = create_engine(f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}')
|
# engine = create_engine(f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}')
|
||||||
warning_data_df['WARNING_DATE'] = datetime.date.today().strftime("%Y-%m-%d %H:%M:%S")
|
# warning_data_df['WARNING_DATE'] = datetime.date.today().strftime("%Y-%m-%d %H:%M:%S")
|
||||||
warning_data_df['TENANT_CODE'] = 'T0004'
|
# warning_data_df['TENANT_CODE'] = 'T0004'
|
||||||
# 插入数据之前查询表数据然后新增id列
|
# # 插入数据之前查询表数据然后新增id列
|
||||||
existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine)
|
# existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine)
|
||||||
if not existing_data.empty:
|
# if not existing_data.empty:
|
||||||
max_id = existing_data['ID'].astype(int).max()
|
# max_id = existing_data['ID'].astype(int).max()
|
||||||
warning_data_df['ID'] = range(max_id + 1, max_id + 1 + len(warning_data_df))
|
# warning_data_df['ID'] = range(max_id + 1, max_id + 1 + len(warning_data_df))
|
||||||
else:
|
# else:
|
||||||
warning_data_df['ID'] = range(1, 1 + len(warning_data_df))
|
# warning_data_df['ID'] = range(1, 1 + len(warning_data_df))
|
||||||
warning_data_df.to_sql(table_name, con=engine, if_exists='append', index=False)
|
# warning_data_df.to_sql(table_name, con=engine, if_exists='append', index=False)
|
||||||
if is_update_warning_data:
|
# if is_update_warning_data:
|
||||||
upload_warning_info(len(warning_data_df))
|
# upload_warning_info(len(warning_data_df))
|
||||||
except:
|
# except:
|
||||||
logger.info('上传预警信息到数据库失败')
|
# logger.info('上传预警信息到数据库失败')
|
||||||
|
|
||||||
if is_corr:
|
# if is_corr:
|
||||||
df = corr_feature(df=df)
|
# df = corr_feature(df=df)
|
||||||
|
|
||||||
df1 = df.copy() # 备份一下,后面特征筛选完之后加入ds y 列用
|
# df1 = df.copy() # 备份一下,后面特征筛选完之后加入ds y 列用
|
||||||
logger.info(f"开始训练模型...")
|
# logger.info(f"开始训练模型...")
|
||||||
row, col = df.shape
|
# row, col = df.shape
|
||||||
|
|
||||||
now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
|
# now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
|
||||||
ex_Model(df,
|
# ex_Model(df,
|
||||||
horizon=horizon,
|
# horizon=horizon,
|
||||||
input_size=input_size,
|
# input_size=input_size,
|
||||||
train_steps=train_steps,
|
# train_steps=train_steps,
|
||||||
val_check_steps=val_check_steps,
|
# val_check_steps=val_check_steps,
|
||||||
early_stop_patience_steps=early_stop_patience_steps,
|
# early_stop_patience_steps=early_stop_patience_steps,
|
||||||
is_debug=is_debug,
|
# is_debug=is_debug,
|
||||||
dataset=dataset,
|
# dataset=dataset,
|
||||||
is_train=is_train,
|
# is_train=is_train,
|
||||||
is_fivemodels=is_fivemodels,
|
# is_fivemodels=is_fivemodels,
|
||||||
val_size=val_size,
|
# val_size=val_size,
|
||||||
test_size=test_size,
|
# test_size=test_size,
|
||||||
settings=settings,
|
# settings=settings,
|
||||||
now=now,
|
# now=now,
|
||||||
etadata=etadata,
|
# etadata=etadata,
|
||||||
modelsindex=modelsindex,
|
# modelsindex=modelsindex,
|
||||||
data=data,
|
# data=data,
|
||||||
is_eta=is_eta,
|
# is_eta=is_eta,
|
||||||
end_time=end_time,
|
# end_time=end_time,
|
||||||
)
|
# )
|
||||||
|
|
||||||
|
|
||||||
logger.info('模型训练完成')
|
# logger.info('模型训练完成')
|
||||||
|
|
||||||
logger.info('训练数据绘图ing')
|
# logger.info('训练数据绘图ing')
|
||||||
model_results3 = model_losss(sqlitedb,end_time=end_time)
|
# model_results3 = model_losss(sqlitedb,end_time=end_time)
|
||||||
logger.info('训练数据绘图end')
|
# logger.info('训练数据绘图end')
|
||||||
|
|
||||||
# 模型报告
|
# 模型报告
|
||||||
logger.info('制作报告ing')
|
logger.info('制作报告ing')
|
||||||
|
@ -945,14 +945,14 @@ def brent_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inpu
|
|||||||
content.append(Graphs.draw_img(os.path.join(dataset,'历史价格-预测值.png')))
|
content.append(Graphs.draw_img(os.path.join(dataset,'历史价格-预测值.png')))
|
||||||
# 波动率画图逻辑
|
# 波动率画图逻辑
|
||||||
content.append(Graphs.draw_text('图示说明:'))
|
content.append(Graphs.draw_text('图示说明:'))
|
||||||
content.append(Graphs.draw_text(' 确定波动率置信区间:设置残差置信阈值,以每周最佳模型为基准,选取在置信区间的预测值作为置信区间;'))
|
content.append(Graphs.draw_text(' 确定置信区间:设置残差置信阈值,以每周最佳模型为基准,选取在置信区间的预测值作为置信区间;'))
|
||||||
|
|
||||||
|
|
||||||
# 添加历史走势及预测价格的走势图片
|
# 添加历史走势及预测价格的走势图片
|
||||||
content.append(Graphs.draw_img(os.path.join(dataset,'历史价格-预测值1.png')))
|
content.append(Graphs.draw_img(os.path.join(dataset,'历史价格-预测值1.png')))
|
||||||
content.append(Graphs.draw_text('图示说明:'))
|
content.append(Graphs.draw_text('图示说明:'))
|
||||||
content.append(Graphs.draw_text(' 确定波动率置信区间:使用模型评估指标MAE得到前十个模型,取平均值上下1.5作为价格波动置信区间;'))
|
content.append(Graphs.draw_text(' 确定置信区间:使用模型评估指标MAE得到前十个模型,取平均值上下1.5作为价格波动置信区间;'))
|
||||||
|
|
||||||
|
|
||||||
# 取df中y列为空的行
|
# 取df中y列为空的行
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
Loading…
Reference in New Issue
Block a user