准确率调试
This commit is contained in:
parent
e6e217df16
commit
d1415d065f
@ -135,10 +135,6 @@ ClassifyId = 1214
|
|||||||
# }
|
# }
|
||||||
|
|
||||||
# 生产环境数据库
|
# 生产环境数据库
|
||||||
# url: jdbc:mysql://rm-2zehj3r1n60ttz9x5.mysql.rds.aliyuncs.com:3306/jingbo?autoReconnect=true&useUnicode=true&characterEncoding=utf8&zeroDateTimeBehavior=convertToNull&transformedBitIsBoolean=true&useSSL=false&serverTimezone=GMT%2B8&nullCatalogMeansCurrent=true
|
|
||||||
# username: jingbo
|
|
||||||
# password: shihua@123
|
|
||||||
# table-schema: jingbo
|
|
||||||
# host = 'rm-2zehj3r1n60ttz9x5.mysql.rds.aliyuncs.com'
|
# host = 'rm-2zehj3r1n60ttz9x5.mysql.rds.aliyuncs.com'
|
||||||
# port = 3306
|
# port = 3306
|
||||||
# dbusername ='jingbo'
|
# dbusername ='jingbo'
|
||||||
@ -146,6 +142,8 @@ ClassifyId = 1214
|
|||||||
# dbname = 'jingbo'
|
# dbname = 'jingbo'
|
||||||
# table_name = 'v_tbl_crude_oil_warning'
|
# table_name = 'v_tbl_crude_oil_warning'
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# 预生产环境
|
# 预生产环境
|
||||||
# host = 'rm-2zehj3r1n60ttz9x5ko.mysql.rds.aliyuncs.com'
|
# host = 'rm-2zehj3r1n60ttz9x5ko.mysql.rds.aliyuncs.com'
|
||||||
# port = 3306
|
# port = 3306
|
||||||
|
@ -351,6 +351,27 @@ def model_losss(sqlitedb):
|
|||||||
lower_bound = df_combined3.loc[row.name,row['columns']].min()
|
lower_bound = df_combined3.loc[row.name,row['columns']].min()
|
||||||
return pd.Series([lower_bound, upper_bound], index=['min_within_quantile', 'max_within_quantile'])
|
return pd.Series([lower_bound, upper_bound], index=['min_within_quantile', 'max_within_quantile'])
|
||||||
df_combined3[['min_within_quantile','max_within_quantile']] = names_df.apply(add_upper_lower_bound, axis=1)
|
df_combined3[['min_within_quantile','max_within_quantile']] = names_df.apply(add_upper_lower_bound, axis=1)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def find_closest_values(row):
|
||||||
|
x = row.y
|
||||||
|
if x is None:
|
||||||
|
return pd.Series([None, None], index=['min_within_quantile','max_within_quantile'])
|
||||||
|
row = row.drop('ds')
|
||||||
|
row = row[:,0].values.tolist()
|
||||||
|
row = row.sort()
|
||||||
|
print(row)
|
||||||
|
# x 在row中的索引
|
||||||
|
index = row.index(x)
|
||||||
|
if index == 0:
|
||||||
|
return pd.Series([row[index+1], row[index+2]], index=['min_within_quantile','max_within_quantile'])
|
||||||
|
elif index == len(row)-1:
|
||||||
|
return pd.Series([row[index-2], row[index-1]], index=['min_within_quantile','max_within_quantile'])
|
||||||
|
else:
|
||||||
|
return pd.Series([row[index-1], row[index+1]], index=['min_within_quantile','max_within_quantile'])
|
||||||
|
|
||||||
|
# df_combined3[['min_within_quantile','max_within_quantile']] = df_combined3.apply(find_closest_values, axis=1)
|
||||||
|
|
||||||
|
|
||||||
def find_most_common_model():
|
def find_most_common_model():
|
||||||
@ -358,7 +379,7 @@ def model_losss(sqlitedb):
|
|||||||
min_model_max_frequency_model = df_combined3['min_model'].tail(60).value_counts().idxmax()
|
min_model_max_frequency_model = df_combined3['min_model'].tail(60).value_counts().idxmax()
|
||||||
max_model_max_frequency_model = df_combined3['max_model'].tail(60).value_counts().idxmax()
|
max_model_max_frequency_model = df_combined3['max_model'].tail(60).value_counts().idxmax()
|
||||||
if min_model_max_frequency_model == max_model_max_frequency_model:
|
if min_model_max_frequency_model == max_model_max_frequency_model:
|
||||||
# 取20天第二多的模型
|
# 取60天第二多的模型
|
||||||
max_model_max_frequency_model = df_combined3['max_model'].tail(60).value_counts().nlargest(2).index[1]
|
max_model_max_frequency_model = df_combined3['max_model'].tail(60).value_counts().nlargest(2).index[1]
|
||||||
|
|
||||||
df_predict['min_model'] = min_model_max_frequency_model
|
df_predict['min_model'] = min_model_max_frequency_model
|
||||||
@ -369,26 +390,33 @@ def model_losss(sqlitedb):
|
|||||||
|
|
||||||
# find_most_common_model()
|
# find_most_common_model()
|
||||||
|
|
||||||
|
df_combined3['ds'] = pd.to_datetime(df_combined3['ds'])
|
||||||
|
df_combined3['ds'] = df_combined3['ds'].dt.strftime('%Y-%m-%d')
|
||||||
df_predict2 = df_combined3.tail(horizon)
|
df_predict2 = df_combined3.tail(horizon)
|
||||||
df_predict2['ds'] = pd.to_datetime(df_predict2['ds'])
|
|
||||||
df_predict2['ds'] = df_predict2['ds'].dt.strftime('%Y-%m-%d')
|
|
||||||
|
|
||||||
# 保存到数据库
|
# 保存到数据库
|
||||||
if not sqlitedb.check_table_exists('accuracy'):
|
# if not sqlitedb.check_table_exists('accuracy'):
|
||||||
sqlitedb.create_table('accuracy', columns="id int,PREDICT_DATE datetime,CREAT_DATE datetime, MIN_PRICE TEXT,MAX_PRICE TEXT,HIGH_PRICE TEXT,LOW_PRICE TEXT,RIGHT_ROTE ")
|
# columns = ','.join(df_combined3.columns.to_list()+['id','CREAT_DATE'])
|
||||||
existing_data = sqlitedb.select_data(table_name = "accuracy")
|
# sqlitedb.create_table('accuracy',columns=columns)
|
||||||
if not existing_data.empty:
|
# existing_data = sqlitedb.select_data(table_name = "accuracy")
|
||||||
max_id = existing_data['id'].astype(int).max()
|
# update_y = sqlitedb.select_data(table_name = "accuracy",where_condition='y is null')
|
||||||
df_predict2['id'] = range(max_id + 1, max_id + 1 + len(df_predict2))
|
# df_combined4 = df_combined3[(df_combined3['ds'].isin(update_y['ds'])) & (df_combined3['y'].notnull())]
|
||||||
else:
|
# if len(df_combined4) > 0:
|
||||||
df_predict2['id'] = range(1, 1 + len(df_predict2))
|
# for index, row in df_combined4.iterrows():
|
||||||
|
# sqlitedb.update_data('accuracy',f"y = {row['y']}",f"ds = '{row['ds']}'")
|
||||||
|
# print(df_combined4)
|
||||||
|
# if not existing_data.empty:
|
||||||
|
# max_id = existing_data['id'].astype(int).max()
|
||||||
|
# df_predict2['id'] = range(max_id + 1, max_id + 1 + len(df_predict2))
|
||||||
|
# else:
|
||||||
|
# df_predict2['id'] = range(1, 1 + len(df_predict2))
|
||||||
|
|
||||||
df_predict2['CREAT_DATE'] = end_time
|
# df_predict2['CREAT_DATE'] = now if end_time == '' else end_time
|
||||||
df_predict2['PREDICT_DATE'] = df_predict2['ds']
|
# df_predict2['PREDICT_DATE'] = df_predict2['ds']
|
||||||
df_predict2['MIN_PRICE'] = df_predict2['min_within_quantile']
|
# df_predict2['MIN_PRICE'] = df_predict2['min_within_quantile']
|
||||||
df_predict2['MAX_PRICE'] = df_predict2['max_within_quantile']
|
# df_predict2['MAX_PRICE'] = df_predict2['max_within_quantile']
|
||||||
df_predict2 = df_predict2[['id','PREDICT_DATE','CREAT_DATE','MIN_PRICE','MAX_PRICE']]
|
# df_predict2 = df_predict2[['id','PREDICT_DATE','CREAT_DATE','MIN_PRICE','MAX_PRICE']]
|
||||||
df_predict2.to_sql("accuracy", con=sqlitedb.connection, if_exists='append', index=False)
|
# df_predict2.to_sql("accuracy", con=sqlitedb.connection, if_exists='append', index=False)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user