图片报告发送调试
This commit is contained in:
		
							parent
							
								
									cc0295822a
								
							
						
					
					
						commit
						d574ea7895
					
				| @ -1,12 +1,7 @@ | ||||
| # 读取配置 | ||||
| 
 | ||||
| from lib.dataread import * | ||||
| from config_juxiting_yuedu import * | ||||
| from lib.tools import SendMail, convert_df_to_pydantic_pp, exception_logger, find_best_models, get_modelsname | ||||
| from models.nerulforcastmodels import ex_Model, model_losss_juxiting, pp_bdwd_png, pp_export_pdf | ||||
| import datetime | ||||
| import torch | ||||
| torch.set_float32_matmul_precision("high") | ||||
| 
 | ||||
| global_config.update({ | ||||
|     # 核心参数 | ||||
| @ -94,474 +89,26 @@ global_config.update({ | ||||
| 
 | ||||
| 
 | ||||
| def push_png_report(): | ||||
|     logger.info('发送图片到钉钉工作组') | ||||
|     current_end_time = global_config['end_time'] | ||||
|     previous_trading_day = (pd.Timestamp(current_end_time) - | ||||
|                             pd.tseries.offsets.BusinessDay(1)).strftime('%Y-%m-%d') | ||||
| 
 | ||||
|     png_report_files = ['pp_zhouducorrelation.png', 'pp_yueducorrelation.png'] | ||||
|     with open(os.path.join(global_config['dataset'], 'pp_zhouducorrelation.png'), 'rb') as f: | ||||
|         base64_data = base64.b64encode(f.read()).decode('utf-8') | ||||
|         config.upload_data["data"]["fileBase64"] = base64_data | ||||
|         data = global_config['push_png_report_data'] | ||||
|         data['data']['fileBase64'] = base64_data | ||||
|     for png_report_file in png_report_files: | ||||
|         logger.info(f'发送图片{png_report_file}到钉钉工作组') | ||||
|         try: | ||||
|             with open(os.path.join(global_config['dataset'], png_report_file), 'rb') as f: | ||||
|                 base64_data = base64.b64encode(f.read()).decode('utf-8') | ||||
|                 config.upload_data["data"]["fileBase64"] = base64_data | ||||
|                 data = global_config['push_png_report_data'] | ||||
|                 data['data']['fileBase64'] = base64_data | ||||
|                 data['data']['billNo'] = str(time.time()) | ||||
| 
 | ||||
|     pngreportdata = push_png_report(data) | ||||
| 
 | ||||
|     print(pngreportdata) | ||||
| 
 | ||||
| 
 | ||||
| def push_market_value(): | ||||
|     logger.info('发送预测结果到市场信息平台') | ||||
|     current_end_time = global_config['end_time'] | ||||
|     previous_trading_day = (pd.Timestamp(current_end_time) - | ||||
|                             pd.tseries.offsets.BusinessDay(1)).strftime('%Y-%m-%d') | ||||
| 
 | ||||
|     # 读取预测数据和模型评估数据 | ||||
|     best_bdwd_price = find_best_models( | ||||
|         date=previous_trading_day, global_config=global_config) | ||||
| 
 | ||||
|     # 获取本月最佳模型的预测价格 | ||||
|     four_month_predict_price = pd.read_csv( | ||||
|         os.path.join(global_config['dataset'], 'predict.csv')) | ||||
|     four_month_predict_price['ds'] = pd.to_datetime( | ||||
|         four_month_predict_price['ds']) | ||||
|     # 设置索引 次月 次二月 次三月 次四月 | ||||
|     index_labels = ["次月", "次二月", "次三月", "次四月"] | ||||
|     four_month_predict_price.index = index_labels | ||||
|     global_config['logger'].info(f"best_bdwd_price: {best_bdwd_price}") | ||||
| 
 | ||||
|     # 准备要推送的数据 | ||||
|     ciyue_mean = four_month_predict_price[best_bdwd_price['next_month_price'] | ||||
|                                           ['model_name']].iloc[0] | ||||
|     cieryue_mean = four_month_predict_price[best_bdwd_price['next_february_price'] | ||||
|                                             ['model_name']].iloc[1] | ||||
|     cisanyue_mean = four_month_predict_price[best_bdwd_price['next_march_price'] | ||||
|                                              ['model_name']].iloc[2] | ||||
|     cisieryue_mean = four_month_predict_price[best_bdwd_price['next_april_price'] | ||||
|                                               ['model_name']].iloc[3] | ||||
|     # # 保留两位小数 | ||||
|     ciyue_mean = round(ciyue_mean, 2) | ||||
|     cieryue_mean = round(cieryue_mean, 2) | ||||
|     cisanyue_mean = round(cisanyue_mean, 2) | ||||
|     cisieryue_mean = round(cisieryue_mean, 2) | ||||
| 
 | ||||
|     predictdata = [ | ||||
|         { | ||||
|             "dataItemNo": global_config['bdwd_items']['ciyue'], | ||||
|             "dataDate": global_config['end_time'].replace('-', ''), | ||||
|             "dataStatus": "add", | ||||
|             "dataValue": ciyue_mean | ||||
|         }, | ||||
|         { | ||||
|             "dataItemNo": global_config['bdwd_items']['cieryue'], | ||||
|             "dataDate": global_config['end_time'].replace('-', ''), | ||||
|             "dataStatus": "add", | ||||
|             "dataValue": cieryue_mean | ||||
|         }, | ||||
|         { | ||||
|             "dataItemNo": global_config['bdwd_items']['cisanyue'], | ||||
|             "dataDate": global_config['end_time'].replace('-', ''), | ||||
|             "dataStatus": "add", | ||||
|             "dataValue": cisanyue_mean | ||||
|         }, | ||||
|         { | ||||
|             "dataItemNo": global_config['bdwd_items']['cisiyue'], | ||||
|             "dataDate": global_config['end_time'].replace('-', ''), | ||||
|             "dataStatus": "add", | ||||
|             "dataValue": cisieryue_mean | ||||
|         } | ||||
|     ] | ||||
| 
 | ||||
|     print(predictdata) | ||||
| 
 | ||||
|     # 推送数据到市场信息平台 | ||||
|     try: | ||||
|         push_market_data(predictdata) | ||||
|     except Exception as e: | ||||
|         logger.error(f"推送数据失败: {e}") | ||||
| 
 | ||||
| 
 | ||||
| def sql_inset_predict(global_config): | ||||
|     df = pd.read_csv(os.path.join(config.dataset, 'predict.csv')) | ||||
|     df['created_dt'] = pd.to_datetime(df['created_dt']) | ||||
|     df['ds'] = pd.to_datetime(df['ds']) | ||||
|     # 获取次月预测结果 | ||||
|     next_month_price_df = df[df['ds'] == df['ds'].min()] | ||||
|     # 获取次二月预测结果 | ||||
|     next_february_price_df = df.iloc[[1]] | ||||
|     # 获取次三月预测结果 | ||||
|     next_march_price_df = df.iloc[[2]] | ||||
|     # 获取次四月预测结果 | ||||
|     next_april_price_df = df[df['ds'] == df['ds'].max()] | ||||
| 
 | ||||
|     wd = ['next_month_price', 'next_february_price', | ||||
|           'next_march_price', 'next_april_price'] | ||||
|     model_name_list, model_id_name_dict = get_modelsname(df, global_config) | ||||
| 
 | ||||
|     PRICE_COLUMNS = [ | ||||
|         'day_price', 'week_price', 'second_week_price', 'next_week_price', | ||||
|         'next_month_price', 'next_february_price', 'next_march_price', 'next_april_price' | ||||
|     ] | ||||
| 
 | ||||
|     params_list = [] | ||||
|     for df, price_type in zip([next_month_price_df, next_february_price_df, next_march_price_df, next_april_price_df], wd): | ||||
| 
 | ||||
|         update_columns = [ | ||||
|             "feature_factor_frequency = VALUES(feature_factor_frequency)", | ||||
|             "oil_code = VALUES(oil_code)", | ||||
|             "oil_name = VALUES(oil_name)", | ||||
|             "data_date = VALUES(data_date)", | ||||
|             "market_price = VALUES(market_price)", | ||||
|             f"{price_type} = VALUES({price_type})", | ||||
|             "model_evaluation_id = VALUES(model_evaluation_id)", | ||||
|             "tenant_code = VALUES(tenant_code)", | ||||
|             "version_num = VALUES(version_num)", | ||||
|             "delete_flag = VALUES(delete_flag)", | ||||
|             "update_user = VALUES(update_user)", | ||||
|             "update_date = VALUES(update_date)" | ||||
|         ] | ||||
| 
 | ||||
|         insert_query = f""" | ||||
|         INSERT INTO v_tbl_predict_pp_prediction_results ( | ||||
|             feature_factor_frequency, strategy_id, oil_code, oil_name, data_date, | ||||
|             market_price, day_price, week_price, second_week_price, next_week_price, | ||||
|             next_month_price, next_february_price, next_march_price, next_april_price, | ||||
|             model_evaluation_id, model_id, tenant_code, version_num, delete_flag, | ||||
|             create_user, create_date, update_user, update_date | ||||
|         ) VALUES ( | ||||
|             %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s | ||||
|         ) | ||||
|         ON DUPLICATE KEY UPDATE | ||||
|             {', '.join(update_columns)} | ||||
|         """ | ||||
| 
 | ||||
|         next_day_df = df[['ds', 'created_dt'] + model_name_list] | ||||
| 
 | ||||
|         pydantic_results = convert_df_to_pydantic_pp( | ||||
|             next_day_df, model_id_name_dict, global_config) | ||||
|         if pydantic_results: | ||||
| 
 | ||||
|             for result in pydantic_results: | ||||
|                 price_values = [None] * len(PRICE_COLUMNS) | ||||
|                 price_index = PRICE_COLUMNS.index(price_type) | ||||
|                 price_values[price_index] = next_day_df[model_id_name_dict[result.model_id]].values[0] | ||||
| 
 | ||||
|                 params = ( | ||||
|                     result.feature_factor_frequency, | ||||
|                     result.strategy_id, | ||||
|                     result.oil_code, | ||||
|                     result.oil_name, | ||||
|                     next_day_df['created_dt'].values[0], | ||||
|                     result.market_price, | ||||
|                     *price_values, | ||||
|                     result.model_evaluation_id, | ||||
|                     result.model_id, | ||||
|                     result.tenant_code, | ||||
|                     1, | ||||
|                     '0', | ||||
|                     result.create_user, | ||||
|                     result.create_date, | ||||
|                     result.update_user, | ||||
|                     result.update_date | ||||
|                 ) | ||||
|                 params_list.append(params) | ||||
|         affected_rows = config.db_mysql.execute_batch_insert( | ||||
|             insert_query, params_list) | ||||
|         config.logger.info(f"成功插入或更新 {affected_rows} 条记录") | ||||
|     config.db_mysql.close() | ||||
| 
 | ||||
| 
 | ||||
| def predict_main(): | ||||
|     """ | ||||
|     主预测函数,用于从 ETA 获取数据、处理数据、训练模型并进行预测。 | ||||
| 
 | ||||
|     参数: | ||||
|         signature (BinanceAPI): Binance API 实例。 | ||||
|         etadata (EtaReader): ETA 数据读取器实例。 | ||||
|         is_eta (bool): 是否从 ETA 获取数据。 | ||||
|         data_set (str): 数据集名称。 | ||||
|         dataset (str): 数据集路径。 | ||||
|         add_kdj (bool): 是否添加 KDJ 指标。 | ||||
|         is_timefurture (bool): 是否添加时间衍生特征。 | ||||
|         end_time (str): 结束时间。 | ||||
|         is_edbnamelist (bool): 是否使用 EDB 名称列表。 | ||||
|         edbnamelist (list): EDB 名称列表。 | ||||
|         y (str): 预测目标列名。 | ||||
|         sqlitedb (SQLiteDB): SQLite 数据库实例。 | ||||
|         is_corr (bool): 是否进行相关性分析。 | ||||
|         horizon (int): 预测时域。 | ||||
|         input_size (int): 输入数据大小。 | ||||
|         train_steps (int): 训练步数。 | ||||
|         val_check_steps (int): 验证检查步数。 | ||||
|         early_stop_patience_steps (int): 早停耐心步数。 | ||||
|         is_debug (bool): 是否调试模式。 | ||||
|         dataset (str): 数据集名称。 | ||||
|         is_train (bool): 是否训练模型。 | ||||
|         is_fivemodels (bool): 是否使用五个模型。 | ||||
|         val_size (float): 验证集大小。 | ||||
|         test_size (float): 测试集大小。 | ||||
|         settings (dict): 模型设置。 | ||||
|         now (str): 当前时间。 | ||||
|         etadata (EtaReader): ETA 数据读取器实例。 | ||||
|         modelsindex (list): 模型索引列表。 | ||||
|         data (str): 数据类型。 | ||||
|         is_eta (bool): 是否从 ETA 获取数据。 | ||||
| 
 | ||||
|     返回: | ||||
|         None | ||||
|     """ | ||||
|     # end_time = global_config['end_time'] | ||||
|     # signature = BinanceAPI(APPID, SECRET) | ||||
|     # etadata = EtaReader(signature=signature, | ||||
|     #                     classifylisturl=global_config['classifylisturl'], | ||||
|     #                     classifyidlisturl=global_config['classifyidlisturl'], | ||||
|     #                     edbcodedataurl=global_config['edbcodedataurl'], | ||||
|     #                     edbcodelist=global_config['edbcodelist'], | ||||
|     #                     edbdatapushurl=global_config['edbdatapushurl'], | ||||
|     #                     edbdeleteurl=global_config['edbdeleteurl'], | ||||
|     #                     edbbusinessurl=global_config['edbbusinessurl'], | ||||
|     #                     classifyId=global_config['ClassifyId'], | ||||
|     #                     ) | ||||
|     # # 获取数据 | ||||
|     # if is_eta: | ||||
|     #     logger.info('从eta获取数据...') | ||||
| 
 | ||||
|     #     df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_pp_data( | ||||
|     #         data_set=data_set, dataset=dataset)  # 原始数据,未处理 | ||||
| 
 | ||||
|     #     if is_market: | ||||
|     #         logger.info('从市场信息平台获取数据...') | ||||
|     #         try: | ||||
|     #             # 如果是测试环境,最高价最低价取excel文档 | ||||
|     #             if server_host == '192.168.100.53': | ||||
|     #                 logger.info('从excel文档获取最高价最低价') | ||||
|     #                 df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju) | ||||
|     #             else: | ||||
|     #                 logger.info('从市场信息平台获取数据') | ||||
|     #                 df_zhibiaoshuju = get_market_data( | ||||
|     #                     end_time, df_zhibiaoshuju) | ||||
| 
 | ||||
|     #         except: | ||||
|     #             logger.info('最高最低价拼接失败') | ||||
| 
 | ||||
|     #     # 保存到xlsx文件的sheet表 | ||||
|     #     with pd.ExcelWriter(os.path.join(dataset, data_set)) as file: | ||||
|     #         df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False) | ||||
|     #         df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False) | ||||
| 
 | ||||
|     #     # 数据处理 | ||||
|     #     df = datachuli_juxiting(df_zhibiaoshuju, df_zhibiaoliebiao, y=global_config['y'], dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture, | ||||
|     #                             end_time=end_time) | ||||
| 
 | ||||
|     # else: | ||||
|     #     # 读取数据 | ||||
|     #     logger.info('读取本地数据:' + os.path.join(dataset, data_set)) | ||||
|     #     df, df_zhibiaoliebiao = getdata_zhoudu_juxiting(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj, | ||||
|     #                                                     is_timefurture=is_timefurture, end_time=end_time)  # 原始数据,未处理 | ||||
| 
 | ||||
|     # # 更改预测列名称 | ||||
|     # df.rename(columns={y: 'y'}, inplace=True) | ||||
| 
 | ||||
|     # if is_edbnamelist: | ||||
|     #     df = df[edbnamelist] | ||||
|     # df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False) | ||||
|     # # 保存最新日期的y值到数据库 | ||||
|     # # 取第一行数据存储到数据库中 | ||||
|     # first_row = df[['ds', 'y']].tail(1) | ||||
|     # # 判断y的类型是否为float | ||||
|     # if not isinstance(first_row['y'].values[0], float): | ||||
|     #     logger.info(f'{end_time}预测目标数据为空,跳过') | ||||
|     #     return None | ||||
| 
 | ||||
|     # # 将最新真实值保存到数据库 | ||||
|     # if not sqlitedb.check_table_exists('trueandpredict'): | ||||
|     #     first_row.to_sql('trueandpredict', sqlitedb.connection, index=False) | ||||
|     # else: | ||||
|     #     for row in first_row.itertuples(index=False): | ||||
|     #         row_dict = row._asdict() | ||||
|     #         config.logger.info(f'要保存的真实值:{row_dict}') | ||||
|     #         # 判断ds是否为字符串类型,如果不是则转换为字符串类型 | ||||
|     #         if isinstance(row_dict['ds'], (pd.Timestamp, datetime.datetime)): | ||||
|     #             row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d') | ||||
|     #         elif not isinstance(row_dict['ds'], str): | ||||
|     #             try: | ||||
|     #                 row_dict['ds'] = pd.to_datetime( | ||||
|     #                     row_dict['ds']).strftime('%Y-%m-%d') | ||||
|     #             except: | ||||
|     #                 logger.warning(f"无法解析的时间格式: {row_dict['ds']}") | ||||
|     #         # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d') | ||||
|     #         # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S') | ||||
|     #         check_query = sqlitedb.select_data( | ||||
|     #             'trueandpredict', where_condition=f"ds = '{row.ds}'") | ||||
|     #         if len(check_query) > 0: | ||||
|     #             set_clause = ", ".join( | ||||
|     #                 [f"{key} = '{value}'" for key, value in row_dict.items()]) | ||||
|     #             sqlitedb.update_data( | ||||
|     #                 'trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'") | ||||
|     #             continue | ||||
|     #         sqlitedb.insert_data('trueandpredict', tuple( | ||||
|     #             row_dict.values()), columns=row_dict.keys()) | ||||
| 
 | ||||
|     # # 更新accuracy表的y值 | ||||
|     # if not sqlitedb.check_table_exists('accuracy'): | ||||
|     #     pass | ||||
|     # else: | ||||
|     #     update_y = sqlitedb.select_data( | ||||
|     #         'accuracy', where_condition="y is null") | ||||
|     #     if len(update_y) > 0: | ||||
|     #         logger.info('更新accuracy表的y值') | ||||
|     #         # 找到update_y 中ds且df中的y的行 | ||||
|     #         update_y = update_y[update_y['ds'] <= end_time] | ||||
|     #         logger.info(f'要更新y的信息:{update_y}') | ||||
|     #         # try: | ||||
|     #         for row in update_y.itertuples(index=False): | ||||
|     #             try: | ||||
|     #                 row_dict = row._asdict() | ||||
|     #                 yy = df[df['ds'] == row_dict['ds']]['y'].values[0] | ||||
|     #                 LOW = df[df['ds'] == row_dict['ds']]['Brentzdj'].values[0] | ||||
|     #                 HIGH = df[df['ds'] == row_dict['ds']]['Brentzgj'].values[0] | ||||
|     #                 sqlitedb.update_data( | ||||
|     #                     'accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'") | ||||
|     #             except: | ||||
|     #                 logger.info(f'更新accuracy表的y值失败:{row_dict}') | ||||
|     #         # except Exception as e: | ||||
|     #         #     logger.info(f'更新accuracy表的y值失败:{e}') | ||||
| 
 | ||||
|     # # 判断当前日期是不是周一 | ||||
|     # is_weekday = datetime.datetime.now().weekday() == 0 | ||||
|     # if is_weekday: | ||||
|     #     logger.info('今天是周一,更新预测模型') | ||||
|     #     # 计算最近60天预测残差最低的模型名称 | ||||
|     #     model_results = sqlitedb.select_data( | ||||
|     #         'trueandpredict', order_by="ds DESC", limit="60") | ||||
|     #     # 删除空值率为90%以上的列 | ||||
|     #     if len(model_results) > 10: | ||||
|     #         model_results = model_results.dropna( | ||||
|     #             thresh=len(model_results)*0.1, axis=1) | ||||
|     #     # 删除空行 | ||||
|     #     model_results = model_results.dropna() | ||||
|     #     modelnames = model_results.columns.to_list()[2:-1] | ||||
|     #     for col in model_results[modelnames].select_dtypes(include=['object']).columns: | ||||
|     #         model_results[col] = model_results[col].astype(np.float32) | ||||
|     #     # 计算每个预测值与真实值之间的偏差率 | ||||
|     #     for model in modelnames: | ||||
|     #         model_results[f'{model}_abs_error_rate'] = abs( | ||||
|     #             model_results['y'] - model_results[model]) / model_results['y'] | ||||
|     #     # 获取每行对应的最小偏差率值 | ||||
|     #     min_abs_error_rate_values = model_results.apply( | ||||
|     #         lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1) | ||||
|     #     # 获取每行对应的最小偏差率值对应的列名 | ||||
|     #     min_abs_error_rate_column_name = model_results.apply( | ||||
|     #         lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1) | ||||
|     #     # 将列名索引转换为列名 | ||||
|     #     min_abs_error_rate_column_name = min_abs_error_rate_column_name.map( | ||||
|     #         lambda x: x.split('_')[0]) | ||||
|     #     # 取出现次数最多的模型名称 | ||||
|     #     most_common_model = min_abs_error_rate_column_name.value_counts().idxmax() | ||||
|     #     logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}") | ||||
|     #     # 保存结果到数据库 | ||||
|     #     if not sqlitedb.check_table_exists('most_model'): | ||||
|     #         sqlitedb.create_table( | ||||
|     #             'most_model', columns="ds datetime, most_common_model TEXT") | ||||
|     #     sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime( | ||||
|     #         '%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',)) | ||||
| 
 | ||||
|     # if is_corr: | ||||
|     #     df = corr_feature(df=df) | ||||
| 
 | ||||
|     # df1 = df.copy()  # 备份一下,后面特征筛选完之后加入ds y 列用 | ||||
|     # logger.info(f"开始训练模型...") | ||||
|     # row, col = df.shape | ||||
| 
 | ||||
|     # now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') | ||||
|     # ex_Model(df, | ||||
|     #          horizon=global_config['horizon'], | ||||
|     #          input_size=global_config['input_size'], | ||||
|     #          train_steps=global_config['train_steps'], | ||||
|     #          val_check_steps=global_config['val_check_steps'], | ||||
|     #          early_stop_patience_steps=global_config['early_stop_patience_steps'], | ||||
|     #          is_debug=global_config['is_debug'], | ||||
|     #          dataset=global_config['dataset'], | ||||
|     #          is_train=global_config['is_train'], | ||||
|     #          is_fivemodels=global_config['is_fivemodels'], | ||||
|     #          val_size=global_config['val_size'], | ||||
|     #          test_size=global_config['test_size'], | ||||
|     #          settings=global_config['settings'], | ||||
|     #          now=now, | ||||
|     #          etadata=etadata, | ||||
|     #          modelsindex=global_config['modelsindex'], | ||||
|     #          data=data, | ||||
|     #          is_eta=global_config['is_eta'], | ||||
|     #          end_time=global_config['end_time'], | ||||
|     #          ) | ||||
| 
 | ||||
|     # logger.info('模型训练完成') | ||||
| 
 | ||||
|     # logger.info('训练数据绘图ing') | ||||
|     # model_results3 = model_losss_juxiting( | ||||
|     #     sqlitedb, end_time=global_config['end_time'], is_fivemodels=global_config['is_fivemodels']) | ||||
|     # logger.info('训练数据绘图end') | ||||
| 
 | ||||
|     push_market_value() | ||||
| 
 | ||||
|     # sql_inset_predict(global_config) | ||||
| 
 | ||||
|     # # 模型报告 | ||||
|     # logger.info('制作报告ing') | ||||
|     # title = f'{settings}--{end_time}-预测报告'  # 报告标题 | ||||
|     # reportname = f'聚烯烃PP大模型月度预测--{end_time}.pdf'  # 报告文件名 | ||||
|     # reportname = reportname.replace(':', '-')  # 替换冒号 | ||||
|     # pp_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time, | ||||
|     #               reportname=reportname, sqlitedb=sqlitedb), | ||||
| 
 | ||||
|     # logger.info('制作报告end') | ||||
| 
 | ||||
|     # 图片报告 | ||||
|     logger.info('图片报告ing') | ||||
|     pp_bdwd_png(global_config=global_config) | ||||
|     logger.info('图片报告end') | ||||
| 
 | ||||
|     # # LSTM 单变量模型 | ||||
|     # ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset) | ||||
| 
 | ||||
|     # # lstm 多变量模型 | ||||
|     # ex_Lstm_M(df,n_days=input_size,out_days=horizon,is_debug=is_debug,datasetpath=dataset) | ||||
| 
 | ||||
|     # # GRU 模型 | ||||
|     # # ex_GRU(df) | ||||
| 
 | ||||
|     # 发送邮件 | ||||
|     # m = SendMail( | ||||
|     #     username=username, | ||||
|     #     passwd=passwd, | ||||
|     #     recv=recv, | ||||
|     #     title=title, | ||||
|     #     content=content, | ||||
|     #     file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime), | ||||
|     #     ssl=ssl, | ||||
|     # ) | ||||
|     # m.send_mail() | ||||
|             pngreportdata = push_png_report_to_market(data) | ||||
|             logger.info(f'{png_report_file}推送图片报告到钉钉成功{pngreportdata}') | ||||
|         except Exception as e: | ||||
|             logger.error(f'{png_report_file}推送图片报告到钉钉失败:{e}') | ||||
| 
 | ||||
| 
 | ||||
| if __name__ == '__main__': | ||||
|     # global end_time | ||||
|     # 遍历2024-11-25 到 2024-12-3 之间的工作日日期 | ||||
|     # for i_time in pd.date_range('2025-7-28', '2025-7-29', freq='B'): | ||||
|     #     try: | ||||
|     #         global_config['end_time'] = i_time.strftime('%Y-%m-%d') | ||||
|     #         global_config['db_mysql'].connect() | ||||
|     #         predict_main() | ||||
|     #     except Exception as e: | ||||
|     #         logger.info(f'预测失败:{e}') | ||||
|     #         continue | ||||
| 
 | ||||
|     # predict_main() | ||||
|     # push_market_value() | ||||
|     push_png_report() | ||||
| 
 | ||||
|     #  图片报告 | ||||
|     # global_config['end_time'] = '2025-07-31' | ||||
|     # logger.info('图片报告ing') | ||||
|     # pp_bdwd_png(global_config=global_config) | ||||
|     # logger.info('图片报告end') | ||||
|  | ||||
| @ -2392,7 +2392,7 @@ def get_market_data(end_time, df): | ||||
|     return df | ||||
| 
 | ||||
| 
 | ||||
| def push_png_report(data): | ||||
| def push_png_report_to_market(data): | ||||
|     ''' | ||||
|     上传预测价格到市场信息平台 | ||||
|     data: 预测价格数据,示例: | ||||
| @ -2403,6 +2403,8 @@ def push_png_report(data): | ||||
|     # 发送请求 | ||||
|     headers = {"Authorization": token} | ||||
|     config.logger.info('推送图片报告中...') | ||||
|     config.logger.info(f'推送图片报告URL:{config.push_png_report_url}') | ||||
|     # config.logger.info(f'推送图片报告数据:{data}') | ||||
|     items_res = requests.post(url=config.push_png_report_url, headers=headers, | ||||
|                               json=data, timeout=(3, 35)) | ||||
|     json_data = json.loads(items_res.text) | ||||
|  | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user