聚烯烃月度逻辑添加图片结果
This commit is contained in:
parent
9647067f65
commit
e44f3f7ecf
@ -88,6 +88,13 @@ bdwdname = [
|
|||||||
'次三月',
|
'次三月',
|
||||||
'次四月',
|
'次四月',
|
||||||
]
|
]
|
||||||
|
|
||||||
|
# 数据库预测结果表八大维度列名
|
||||||
|
price_columns = [
|
||||||
|
'day_price', 'week_price', 'second_week_price', 'next_week_price',
|
||||||
|
'next_month_price', 'next_february_price', 'next_march_price', 'next_april_price'
|
||||||
|
]
|
||||||
|
|
||||||
modelsindex = [
|
modelsindex = [
|
||||||
{
|
{
|
||||||
"NHITS": "SELF0000275",
|
"NHITS": "SELF0000275",
|
||||||
@ -406,8 +413,8 @@ bdwd_items = {
|
|||||||
}
|
}
|
||||||
|
|
||||||
# 报告中八大维度数据项重命名
|
# 报告中八大维度数据项重命名
|
||||||
columnsrename={'jxtppbdwdbz': '本周', 'jxtppbdwdcey': '次二月', 'jxtppbdwdcr': '次日', 'jxtppbdwdcsiy': '次四月',
|
columnsrename = {'jxtppbdwdbz': '本周', 'jxtppbdwdcey': '次二月', 'jxtppbdwdcr': '次日', 'jxtppbdwdcsiy': '次四月',
|
||||||
'jxtppbdwdcsany': '次三月', 'jxtppbdwdcy': '次月', 'jxtppbdwdcz': '次周', 'jxtppbdwdgz': '隔周', }
|
'jxtppbdwdcsany': '次三月', 'jxtppbdwdcy': '次月', 'jxtppbdwdcz': '次周', 'jxtppbdwdgz': '隔周', }
|
||||||
|
|
||||||
# 北京环境数据库
|
# 北京环境数据库
|
||||||
host = '192.168.101.27'
|
host = '192.168.101.27'
|
||||||
@ -459,7 +466,7 @@ print("数据库连接成功", host, dbname, dbusername)
|
|||||||
|
|
||||||
# 数据截取日期
|
# 数据截取日期
|
||||||
start_year = 2000 # 数据开始年份
|
start_year = 2000 # 数据开始年份
|
||||||
end_time = '' # 数据截取日期
|
end_time = '2025-07-22' # 数据截取日期
|
||||||
freq = 'M' # 时间频率,"D": 天 "W": 周"M": 月"Q": 季度"A": 年 "H": 小时 "T": 分钟 "S": 秒 "B": 工作日
|
freq = 'M' # 时间频率,"D": 天 "W": 周"M": 月"Q": 季度"A": 年 "H": 小时 "T": 分钟 "S": 秒 "B": 工作日
|
||||||
delweekenday = True if freq == 'B' else False # 是否删除周末数据
|
delweekenday = True if freq == 'B' else False # 是否删除周末数据
|
||||||
is_corr = False # 特征是否参与滞后领先提升相关系数
|
is_corr = False # 特征是否参与滞后领先提升相关系数
|
||||||
|
26
lib/tools.py
26
lib/tools.py
@ -864,8 +864,7 @@ def find_best_models(date='', global_config=None):
|
|||||||
|
|
||||||
# 获取真实价格数据
|
# 获取真实价格数据
|
||||||
try:
|
try:
|
||||||
true_price = pd.read_csv(os.path.join(
|
true_price = pd.read_csv('juxitingdataset/指标数据.csv')[['ds', 'y']]
|
||||||
global_config['dataset'], '指标数据.csv'))[['ds', 'y']]
|
|
||||||
except FileNotFoundError:
|
except FileNotFoundError:
|
||||||
global_config['logger'].error(
|
global_config['logger'].error(
|
||||||
f"未找到文件: {os.path.join(global_config['dataset'], '指标数据.csv')}")
|
f"未找到文件: {os.path.join(global_config['dataset'], '指标数据.csv')}")
|
||||||
@ -1082,23 +1081,31 @@ def plot_pp_predict_result(y_hat, global_config):
|
|||||||
import seaborn as sns
|
import seaborn as sns
|
||||||
|
|
||||||
# 获取y的真实值
|
# 获取y的真实值
|
||||||
y = pd.read_csv(os.path.join(
|
# y = pd.read_csv(os.path.join(
|
||||||
global_config['dataset'], '指标数据.csv'))[['ds', 'y']]
|
# global_config['dataset'], '指标数据.csv'))[['ds', 'y']]
|
||||||
|
y = pd.read_csv('juxitingdataset/指标数据.csv')[['ds', 'y']]
|
||||||
y['ds'] = pd.to_datetime(y['ds'])
|
y['ds'] = pd.to_datetime(y['ds'])
|
||||||
y = y[y['ds'] < y_hat['ds'].iloc[0]][-30:]
|
y = y[y['ds'] < y_hat['ds'].iloc[0]][-30:]
|
||||||
|
|
||||||
|
# 取y的最后一行数据追加到y_hat(将真实值最后一行作为预测值起点)
|
||||||
|
if not y.empty:
|
||||||
|
# 获取y的最后一行并将'y'列重命名为'predictresult'以匹配y_hat结构
|
||||||
|
y_last_row = y.tail(1).rename(columns={'y': 'predictresult'})
|
||||||
|
# 追加到y_hat
|
||||||
|
y_y_hat = pd.concat([y_last_row, y_hat], ignore_index=True)
|
||||||
|
|
||||||
# 创建图表和子图布局,为表格预留空间
|
# 创建图表和子图布局,为表格预留空间
|
||||||
fig, ax = plt.subplots(figsize=(16, 9))
|
fig, ax = plt.subplots(figsize=(16, 9))
|
||||||
|
|
||||||
# 对日期列进行排序,确保日期大的在右边
|
# 对日期列进行排序,确保日期大的在右边
|
||||||
y_hat = y_hat.sort_values(by='ds')
|
y_y_hat = y_y_hat.sort_values(by='ds')
|
||||||
y = y.sort_values(by='ds')
|
y = y.sort_values(by='ds')
|
||||||
|
|
||||||
# 绘制 y_hat 的折线图,颜色为橙色
|
# 绘制 y_hat 的折线图,颜色为橙色
|
||||||
sns.lineplot(x=y_hat['ds'], y=y_hat['predictresult'],
|
sns.lineplot(x=y_y_hat['ds'], y=y_y_hat['predictresult'],
|
||||||
color='orange', label='y_hat', ax=ax, linestyle='--')
|
color='orange', label='预测值', ax=ax, linestyle='--')
|
||||||
# 绘制 y 的折线图,颜色为蓝色
|
# 绘制 y 的折线图,颜色为蓝色
|
||||||
sns.lineplot(x=y['ds'], y=y['y'], color='blue', label='y', ax=ax)
|
sns.lineplot(x=y['ds'], y=y['y'], color='blue', label='真实值', ax=ax)
|
||||||
|
|
||||||
# date_str = pd.Timestamp(y_hat["ds"].iloc[0]).strftime('%Y-%m-%d')
|
# date_str = pd.Timestamp(y_hat["ds"].iloc[0]).strftime('%Y-%m-%d')
|
||||||
ax.set_title(f'{global_config["end_time"]} PP期货八大维度 预测价格走势')
|
ax.set_title(f'{global_config["end_time"]} PP期货八大维度 预测价格走势')
|
||||||
@ -1129,7 +1136,8 @@ def plot_pp_predict_result(y_hat, global_config):
|
|||||||
table.set_fontsize(14)
|
table.set_fontsize(14)
|
||||||
|
|
||||||
plt.tight_layout(rect=[0, 0.1, 1, 1]) # 调整布局,为表格留出空间
|
plt.tight_layout(rect=[0, 0.1, 1, 1]) # 调整布局,为表格留出空间
|
||||||
plt.savefig('pp_predict_result.png')
|
plt.savefig(os.path.join(
|
||||||
|
global_config['dataset'], 'pp_predict_result.png'))
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
@ -554,14 +554,7 @@ if __name__ == '__main__':
|
|||||||
# logger.info(f'预测失败:{e}')
|
# logger.info(f'预测失败:{e}')
|
||||||
# continue
|
# continue
|
||||||
|
|
||||||
# predict_main()
|
predict_main()
|
||||||
|
|
||||||
# push_market_value()
|
# push_market_value()
|
||||||
# sql_inset_predict(global_config)
|
# sql_inset_predict(global_config)
|
||||||
from lib.tools import find_best_models
|
|
||||||
best_bdwd_price = find_best_models(
|
|
||||||
date='2025-07-22', global_config=global_config)
|
|
||||||
y_hat = pd.DataFrame(best_bdwd_price).T[['date', 'predictresult']]
|
|
||||||
y_hat['ds'] = pd.to_datetime(y_hat['date'])
|
|
||||||
# 绘制PP期货预测结果的图表
|
|
||||||
plot_pp_predict_result(y_hat, global_config)
|
|
||||||
|
@ -3,7 +3,7 @@
|
|||||||
from lib.dataread import *
|
from lib.dataread import *
|
||||||
from config_juxiting_yuedu import *
|
from config_juxiting_yuedu import *
|
||||||
from lib.tools import SendMail, convert_df_to_pydantic_pp, exception_logger, get_modelsname
|
from lib.tools import SendMail, convert_df_to_pydantic_pp, exception_logger, get_modelsname
|
||||||
from models.nerulforcastmodels import ex_Model, model_losss_juxiting, pp_export_pdf
|
from models.nerulforcastmodels import ex_Model, model_losss_juxiting, pp_bdwd_png, pp_export_pdf
|
||||||
import datetime
|
import datetime
|
||||||
import torch
|
import torch
|
||||||
torch.set_float32_matmul_precision("high")
|
torch.set_float32_matmul_precision("high")
|
||||||
@ -24,6 +24,7 @@ global_config.update({
|
|||||||
'settings': settings,
|
'settings': settings,
|
||||||
'bdwdname': bdwdname,
|
'bdwdname': bdwdname,
|
||||||
'columnsrename': columnsrename,
|
'columnsrename': columnsrename,
|
||||||
|
'price_columns': price_columns,
|
||||||
|
|
||||||
|
|
||||||
# 模型参数
|
# 模型参数
|
||||||
@ -291,210 +292,218 @@ def predict_main():
|
|||||||
返回:
|
返回:
|
||||||
None
|
None
|
||||||
"""
|
"""
|
||||||
# end_time = global_config['end_time']
|
end_time = global_config['end_time']
|
||||||
# signature = BinanceAPI(APPID, SECRET)
|
signature = BinanceAPI(APPID, SECRET)
|
||||||
# etadata = EtaReader(signature=signature,
|
etadata = EtaReader(signature=signature,
|
||||||
# classifylisturl=global_config['classifylisturl'],
|
classifylisturl=global_config['classifylisturl'],
|
||||||
# classifyidlisturl=global_config['classifyidlisturl'],
|
classifyidlisturl=global_config['classifyidlisturl'],
|
||||||
# edbcodedataurl=global_config['edbcodedataurl'],
|
edbcodedataurl=global_config['edbcodedataurl'],
|
||||||
# edbcodelist=global_config['edbcodelist'],
|
edbcodelist=global_config['edbcodelist'],
|
||||||
# edbdatapushurl=global_config['edbdatapushurl'],
|
edbdatapushurl=global_config['edbdatapushurl'],
|
||||||
# edbdeleteurl=global_config['edbdeleteurl'],
|
edbdeleteurl=global_config['edbdeleteurl'],
|
||||||
# edbbusinessurl=global_config['edbbusinessurl'],
|
edbbusinessurl=global_config['edbbusinessurl'],
|
||||||
# classifyId=global_config['ClassifyId'],
|
classifyId=global_config['ClassifyId'],
|
||||||
# )
|
)
|
||||||
# # 获取数据
|
# 获取数据
|
||||||
# if is_eta:
|
if is_eta:
|
||||||
# logger.info('从eta获取数据...')
|
logger.info('从eta获取数据...')
|
||||||
|
|
||||||
# df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_pp_data(
|
df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_pp_data(
|
||||||
# data_set=data_set, dataset=dataset) # 原始数据,未处理
|
data_set=data_set, dataset=dataset) # 原始数据,未处理
|
||||||
|
|
||||||
# if is_market:
|
if is_market:
|
||||||
# logger.info('从市场信息平台获取数据...')
|
logger.info('从市场信息平台获取数据...')
|
||||||
# try:
|
try:
|
||||||
# # 如果是测试环境,最高价最低价取excel文档
|
# 如果是测试环境,最高价最低价取excel文档
|
||||||
# if server_host == '192.168.100.53':
|
if server_host == '192.168.100.53':
|
||||||
# logger.info('从excel文档获取最高价最低价')
|
logger.info('从excel文档获取最高价最低价')
|
||||||
# df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju)
|
df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju)
|
||||||
# else:
|
else:
|
||||||
# logger.info('从市场信息平台获取数据')
|
logger.info('从市场信息平台获取数据')
|
||||||
# df_zhibiaoshuju = get_market_data(
|
df_zhibiaoshuju = get_market_data(
|
||||||
# end_time, df_zhibiaoshuju)
|
end_time, df_zhibiaoshuju)
|
||||||
|
|
||||||
# except:
|
except:
|
||||||
# logger.info('最高最低价拼接失败')
|
logger.info('最高最低价拼接失败')
|
||||||
|
|
||||||
# # 保存到xlsx文件的sheet表
|
# 保存到xlsx文件的sheet表
|
||||||
# with pd.ExcelWriter(os.path.join(dataset, data_set)) as file:
|
with pd.ExcelWriter(os.path.join(dataset, data_set)) as file:
|
||||||
# df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False)
|
df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False)
|
||||||
# df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False)
|
df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False)
|
||||||
|
|
||||||
# # 数据处理
|
# 数据处理
|
||||||
# df = datachuli_juxiting(df_zhibiaoshuju, df_zhibiaoliebiao, y=global_config['y'], dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture,
|
df = datachuli_juxiting(df_zhibiaoshuju, df_zhibiaoliebiao, y=global_config['y'], dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture,
|
||||||
# end_time=end_time)
|
end_time=end_time)
|
||||||
|
|
||||||
# else:
|
else:
|
||||||
# # 读取数据
|
# 读取数据
|
||||||
# logger.info('读取本地数据:' + os.path.join(dataset, data_set))
|
logger.info('读取本地数据:' + os.path.join(dataset, data_set))
|
||||||
# df, df_zhibiaoliebiao = getdata_zhoudu_juxiting(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj,
|
df, df_zhibiaoliebiao = getdata_zhoudu_juxiting(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj,
|
||||||
# is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理
|
is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理
|
||||||
|
|
||||||
# # 更改预测列名称
|
# 更改预测列名称
|
||||||
# df.rename(columns={y: 'y'}, inplace=True)
|
df.rename(columns={y: 'y'}, inplace=True)
|
||||||
|
|
||||||
# if is_edbnamelist:
|
if is_edbnamelist:
|
||||||
# df = df[edbnamelist]
|
df = df[edbnamelist]
|
||||||
# df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False)
|
df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False)
|
||||||
# # 保存最新日期的y值到数据库
|
# 保存最新日期的y值到数据库
|
||||||
# # 取第一行数据存储到数据库中
|
# 取第一行数据存储到数据库中
|
||||||
# first_row = df[['ds', 'y']].tail(1)
|
first_row = df[['ds', 'y']].tail(1)
|
||||||
# # 判断y的类型是否为float
|
# 判断y的类型是否为float
|
||||||
# if not isinstance(first_row['y'].values[0], float):
|
if not isinstance(first_row['y'].values[0], float):
|
||||||
# logger.info(f'{end_time}预测目标数据为空,跳过')
|
logger.info(f'{end_time}预测目标数据为空,跳过')
|
||||||
# return None
|
return None
|
||||||
|
|
||||||
# # 将最新真实值保存到数据库
|
# 将最新真实值保存到数据库
|
||||||
# if not sqlitedb.check_table_exists('trueandpredict'):
|
if not sqlitedb.check_table_exists('trueandpredict'):
|
||||||
# first_row.to_sql('trueandpredict', sqlitedb.connection, index=False)
|
first_row.to_sql('trueandpredict', sqlitedb.connection, index=False)
|
||||||
# else:
|
else:
|
||||||
# for row in first_row.itertuples(index=False):
|
for row in first_row.itertuples(index=False):
|
||||||
# row_dict = row._asdict()
|
row_dict = row._asdict()
|
||||||
# config.logger.info(f'要保存的真实值:{row_dict}')
|
config.logger.info(f'要保存的真实值:{row_dict}')
|
||||||
# # 判断ds是否为字符串类型,如果不是则转换为字符串类型
|
# 判断ds是否为字符串类型,如果不是则转换为字符串类型
|
||||||
# if isinstance(row_dict['ds'], (pd.Timestamp, datetime.datetime)):
|
if isinstance(row_dict['ds'], (pd.Timestamp, datetime.datetime)):
|
||||||
# row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
|
row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
|
||||||
# elif not isinstance(row_dict['ds'], str):
|
elif not isinstance(row_dict['ds'], str):
|
||||||
# try:
|
try:
|
||||||
# row_dict['ds'] = pd.to_datetime(
|
row_dict['ds'] = pd.to_datetime(
|
||||||
# row_dict['ds']).strftime('%Y-%m-%d')
|
row_dict['ds']).strftime('%Y-%m-%d')
|
||||||
# except:
|
except:
|
||||||
# logger.warning(f"无法解析的时间格式: {row_dict['ds']}")
|
logger.warning(f"无法解析的时间格式: {row_dict['ds']}")
|
||||||
# # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
|
# row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
|
||||||
# # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S')
|
# row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S')
|
||||||
# check_query = sqlitedb.select_data(
|
check_query = sqlitedb.select_data(
|
||||||
# 'trueandpredict', where_condition=f"ds = '{row.ds}'")
|
'trueandpredict', where_condition=f"ds = '{row.ds}'")
|
||||||
# if len(check_query) > 0:
|
if len(check_query) > 0:
|
||||||
# set_clause = ", ".join(
|
set_clause = ", ".join(
|
||||||
# [f"{key} = '{value}'" for key, value in row_dict.items()])
|
[f"{key} = '{value}'" for key, value in row_dict.items()])
|
||||||
# sqlitedb.update_data(
|
sqlitedb.update_data(
|
||||||
# 'trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'")
|
'trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'")
|
||||||
# continue
|
continue
|
||||||
# sqlitedb.insert_data('trueandpredict', tuple(
|
sqlitedb.insert_data('trueandpredict', tuple(
|
||||||
# row_dict.values()), columns=row_dict.keys())
|
row_dict.values()), columns=row_dict.keys())
|
||||||
|
|
||||||
# # 更新accuracy表的y值
|
# 更新accuracy表的y值
|
||||||
# if not sqlitedb.check_table_exists('accuracy'):
|
if not sqlitedb.check_table_exists('accuracy'):
|
||||||
# pass
|
pass
|
||||||
# else:
|
else:
|
||||||
# update_y = sqlitedb.select_data(
|
update_y = sqlitedb.select_data(
|
||||||
# 'accuracy', where_condition="y is null")
|
'accuracy', where_condition="y is null")
|
||||||
# if len(update_y) > 0:
|
if len(update_y) > 0:
|
||||||
# logger.info('更新accuracy表的y值')
|
logger.info('更新accuracy表的y值')
|
||||||
# # 找到update_y 中ds且df中的y的行
|
# 找到update_y 中ds且df中的y的行
|
||||||
# update_y = update_y[update_y['ds'] <= end_time]
|
update_y = update_y[update_y['ds'] <= end_time]
|
||||||
# logger.info(f'要更新y的信息:{update_y}')
|
logger.info(f'要更新y的信息:{update_y}')
|
||||||
# # try:
|
# try:
|
||||||
# for row in update_y.itertuples(index=False):
|
for row in update_y.itertuples(index=False):
|
||||||
# try:
|
try:
|
||||||
# row_dict = row._asdict()
|
row_dict = row._asdict()
|
||||||
# yy = df[df['ds'] == row_dict['ds']]['y'].values[0]
|
yy = df[df['ds'] == row_dict['ds']]['y'].values[0]
|
||||||
# LOW = df[df['ds'] == row_dict['ds']]['Brentzdj'].values[0]
|
LOW = df[df['ds'] == row_dict['ds']]['Brentzdj'].values[0]
|
||||||
# HIGH = df[df['ds'] == row_dict['ds']]['Brentzgj'].values[0]
|
HIGH = df[df['ds'] == row_dict['ds']]['Brentzgj'].values[0]
|
||||||
# sqlitedb.update_data(
|
sqlitedb.update_data(
|
||||||
# 'accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'")
|
'accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'")
|
||||||
# except:
|
except:
|
||||||
# logger.info(f'更新accuracy表的y值失败:{row_dict}')
|
logger.info(f'更新accuracy表的y值失败:{row_dict}')
|
||||||
# # except Exception as e:
|
# except Exception as e:
|
||||||
# # logger.info(f'更新accuracy表的y值失败:{e}')
|
# logger.info(f'更新accuracy表的y值失败:{e}')
|
||||||
|
|
||||||
# # 判断当前日期是不是周一
|
# 判断当前日期是不是周一
|
||||||
# is_weekday = datetime.datetime.now().weekday() == 0
|
is_weekday = datetime.datetime.now().weekday() == 0
|
||||||
# if is_weekday:
|
if is_weekday:
|
||||||
# logger.info('今天是周一,更新预测模型')
|
logger.info('今天是周一,更新预测模型')
|
||||||
# # 计算最近60天预测残差最低的模型名称
|
# 计算最近60天预测残差最低的模型名称
|
||||||
# model_results = sqlitedb.select_data(
|
model_results = sqlitedb.select_data(
|
||||||
# 'trueandpredict', order_by="ds DESC", limit="60")
|
'trueandpredict', order_by="ds DESC", limit="60")
|
||||||
# # 删除空值率为90%以上的列
|
# 删除空值率为90%以上的列
|
||||||
# if len(model_results) > 10:
|
if len(model_results) > 10:
|
||||||
# model_results = model_results.dropna(
|
model_results = model_results.dropna(
|
||||||
# thresh=len(model_results)*0.1, axis=1)
|
thresh=len(model_results)*0.1, axis=1)
|
||||||
# # 删除空行
|
# 删除空行
|
||||||
# model_results = model_results.dropna()
|
model_results = model_results.dropna()
|
||||||
# modelnames = model_results.columns.to_list()[2:-1]
|
modelnames = model_results.columns.to_list()[2:-1]
|
||||||
# for col in model_results[modelnames].select_dtypes(include=['object']).columns:
|
for col in model_results[modelnames].select_dtypes(include=['object']).columns:
|
||||||
# model_results[col] = model_results[col].astype(np.float32)
|
model_results[col] = model_results[col].astype(np.float32)
|
||||||
# # 计算每个预测值与真实值之间的偏差率
|
# 计算每个预测值与真实值之间的偏差率
|
||||||
# for model in modelnames:
|
for model in modelnames:
|
||||||
# model_results[f'{model}_abs_error_rate'] = abs(
|
model_results[f'{model}_abs_error_rate'] = abs(
|
||||||
# model_results['y'] - model_results[model]) / model_results['y']
|
model_results['y'] - model_results[model]) / model_results['y']
|
||||||
# # 获取每行对应的最小偏差率值
|
# 获取每行对应的最小偏差率值
|
||||||
# min_abs_error_rate_values = model_results.apply(
|
min_abs_error_rate_values = model_results.apply(
|
||||||
# lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)
|
lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)
|
||||||
# # 获取每行对应的最小偏差率值对应的列名
|
# 获取每行对应的最小偏差率值对应的列名
|
||||||
# min_abs_error_rate_column_name = model_results.apply(
|
min_abs_error_rate_column_name = model_results.apply(
|
||||||
# lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1)
|
lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1)
|
||||||
# # 将列名索引转换为列名
|
# 将列名索引转换为列名
|
||||||
# min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(
|
min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(
|
||||||
# lambda x: x.split('_')[0])
|
lambda x: x.split('_')[0])
|
||||||
# # 取出现次数最多的模型名称
|
# 取出现次数最多的模型名称
|
||||||
# most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
|
most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
|
||||||
# logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}")
|
logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}")
|
||||||
# # 保存结果到数据库
|
# 保存结果到数据库
|
||||||
# if not sqlitedb.check_table_exists('most_model'):
|
if not sqlitedb.check_table_exists('most_model'):
|
||||||
# sqlitedb.create_table(
|
sqlitedb.create_table(
|
||||||
# 'most_model', columns="ds datetime, most_common_model TEXT")
|
'most_model', columns="ds datetime, most_common_model TEXT")
|
||||||
# sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime(
|
sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime(
|
||||||
# '%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
|
'%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
|
||||||
|
|
||||||
# if is_corr:
|
if is_corr:
|
||||||
# df = corr_feature(df=df)
|
df = corr_feature(df=df)
|
||||||
|
|
||||||
# df1 = df.copy() # 备份一下,后面特征筛选完之后加入ds y 列用
|
df1 = df.copy() # 备份一下,后面特征筛选完之后加入ds y 列用
|
||||||
# logger.info(f"开始训练模型...")
|
logger.info(f"开始训练模型...")
|
||||||
# row, col = df.shape
|
row, col = df.shape
|
||||||
|
|
||||||
# now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
|
now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
|
||||||
# ex_Model(df,
|
ex_Model(df,
|
||||||
# horizon=global_config['horizon'],
|
horizon=global_config['horizon'],
|
||||||
# input_size=global_config['input_size'],
|
input_size=global_config['input_size'],
|
||||||
# train_steps=global_config['train_steps'],
|
train_steps=global_config['train_steps'],
|
||||||
# val_check_steps=global_config['val_check_steps'],
|
val_check_steps=global_config['val_check_steps'],
|
||||||
# early_stop_patience_steps=global_config['early_stop_patience_steps'],
|
early_stop_patience_steps=global_config['early_stop_patience_steps'],
|
||||||
# is_debug=global_config['is_debug'],
|
is_debug=global_config['is_debug'],
|
||||||
# dataset=global_config['dataset'],
|
dataset=global_config['dataset'],
|
||||||
# is_train=global_config['is_train'],
|
is_train=global_config['is_train'],
|
||||||
# is_fivemodels=global_config['is_fivemodels'],
|
is_fivemodels=global_config['is_fivemodels'],
|
||||||
# val_size=global_config['val_size'],
|
val_size=global_config['val_size'],
|
||||||
# test_size=global_config['test_size'],
|
test_size=global_config['test_size'],
|
||||||
# settings=global_config['settings'],
|
settings=global_config['settings'],
|
||||||
# now=now,
|
now=now,
|
||||||
# etadata=etadata,
|
etadata=etadata,
|
||||||
# modelsindex=global_config['modelsindex'],
|
modelsindex=global_config['modelsindex'],
|
||||||
# data=data,
|
data=data,
|
||||||
# is_eta=global_config['is_eta'],
|
is_eta=global_config['is_eta'],
|
||||||
# end_time=global_config['end_time'],
|
end_time=global_config['end_time'],
|
||||||
# )
|
)
|
||||||
|
|
||||||
# logger.info('模型训练完成')
|
logger.info('模型训练完成')
|
||||||
|
|
||||||
# logger.info('训练数据绘图ing')
|
logger.info('训练数据绘图ing')
|
||||||
# model_results3 = model_losss_juxiting(sqlitedb, end_time=global_config['end_time'],is_fivemodels=global_config['is_fivemodels'])
|
model_results3 = model_losss_juxiting(
|
||||||
# logger.info('训练数据绘图end')
|
sqlitedb, end_time=global_config['end_time'], is_fivemodels=global_config['is_fivemodels'])
|
||||||
|
logger.info('训练数据绘图end')
|
||||||
|
|
||||||
# push_market_value()
|
push_market_value()
|
||||||
# # 模型报告
|
|
||||||
# logger.info('制作报告ing')
|
|
||||||
# title = f'{settings}--{end_time}-预测报告' # 报告标题
|
|
||||||
# reportname = f'聚烯烃PP大模型月度预测--{end_time}.pdf' # 报告文件名
|
|
||||||
# reportname = reportname.replace(':', '-') # 替换冒号
|
|
||||||
# pp_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time,
|
|
||||||
# reportname=reportname, sqlitedb=sqlitedb),
|
|
||||||
|
|
||||||
# logger.info('制作报告end')
|
|
||||||
# logger.info('模型训练完成')
|
|
||||||
sql_inset_predict(global_config)
|
sql_inset_predict(global_config)
|
||||||
|
|
||||||
|
模型报告
|
||||||
|
logger.info('制作报告ing')
|
||||||
|
title = f'{settings}--{end_time}-预测报告' # 报告标题
|
||||||
|
reportname = f'聚烯烃PP大模型月度预测--{end_time}.pdf' # 报告文件名
|
||||||
|
reportname = reportname.replace(':', '-') # 替换冒号
|
||||||
|
pp_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time,
|
||||||
|
reportname=reportname, sqlitedb=sqlitedb),
|
||||||
|
|
||||||
|
logger.info('制作报告end')
|
||||||
|
logger.info('模型训练完成')
|
||||||
|
|
||||||
|
# 图片报告
|
||||||
|
logger.info('图片报告ing')
|
||||||
|
pp_bdwd_png(global_config=global_config)
|
||||||
|
logger.info('图片报告end')
|
||||||
|
|
||||||
# # LSTM 单变量模型
|
# # LSTM 单变量模型
|
||||||
# ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset)
|
# ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset)
|
||||||
|
|
||||||
|
@ -6,7 +6,7 @@ import seaborn as sns
|
|||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import matplotlib.dates as mdates
|
import matplotlib.dates as mdates
|
||||||
import datetime
|
import datetime
|
||||||
from lib.tools import Graphs, mse, rmse, mae, exception_logger
|
from lib.tools import Graphs, find_best_models, mse, plot_pp_predict_result, rmse, mae, exception_logger
|
||||||
from lib.tools import save_to_database, get_week_date
|
from lib.tools import save_to_database, get_week_date
|
||||||
from lib.dataread import *
|
from lib.dataread import *
|
||||||
from neuralforecast import NeuralForecast
|
from neuralforecast import NeuralForecast
|
||||||
@ -165,7 +165,8 @@ def ex_Model(df, horizon, input_size, train_steps, val_check_steps, early_stop_p
|
|||||||
|
|
||||||
# VanillaTransformer(h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps, scaler_type='standard', ), //报错了
|
# VanillaTransformer(h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps, scaler_type='standard', ), //报错了
|
||||||
# Autoformer(h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps, scaler_type='standard', ), //报错了
|
# Autoformer(h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps, scaler_type='standard', ), //报错了
|
||||||
NBEATS(h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps, scaler_type='standard', ),
|
NBEATS(h=horizon, input_size=input_size, max_steps=train_steps,
|
||||||
|
val_check_steps=val_check_steps, scaler_type='standard', ),
|
||||||
# NBEATSx(h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps, scaler_type='standard',activation='ReLU', ), //报错
|
# NBEATSx(h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps, scaler_type='standard',activation='ReLU', ), //报错
|
||||||
# HINT(h=horizon),
|
# HINT(h=horizon),
|
||||||
|
|
||||||
@ -2359,7 +2360,8 @@ def brent_export_pdf(num_indicators=475, num_models=21, num_dayindicator=202, in
|
|||||||
stime = df3['ds'].iloc[0]
|
stime = df3['ds'].iloc[0]
|
||||||
etime = df3['ds'].iloc[-1]
|
etime = df3['ds'].iloc[-1]
|
||||||
# 添加偏差率表格
|
# 添加偏差率表格
|
||||||
fivemodels = '、'.join(eval_df['模型(Model)'].values[:5]) # 字符串形式,后面写入字符串使用
|
fivemodels = '、'.join(
|
||||||
|
eval_df['模型(Model)'].values[:5]) # 字符串形式,后面写入字符串使用
|
||||||
content.append(Graphs.draw_text(
|
content.append(Graphs.draw_text(
|
||||||
f'预测使用了{num_models}个模型进行训练,使用评估结果MAE前五的模型分别是 {fivemodels} ,模型上一预测区间 {stime} -- {etime}的偏差率(%)分别是:'))
|
f'预测使用了{num_models}个模型进行训练,使用评估结果MAE前五的模型分别是 {fivemodels} ,模型上一预测区间 {stime} -- {etime}的偏差率(%)分别是:'))
|
||||||
# # 添加偏差率表格
|
# # 添加偏差率表格
|
||||||
@ -2370,7 +2372,8 @@ def brent_export_pdf(num_indicators=475, num_models=21, num_dayindicator=202, in
|
|||||||
content.append(Graphs.draw_table(col_width, *data))
|
content.append(Graphs.draw_table(col_width, *data))
|
||||||
|
|
||||||
content.append(Graphs.draw_little_title('上一周预测准确率:'))
|
content.append(Graphs.draw_little_title('上一周预测准确率:'))
|
||||||
df4 = sqlitedb.select_data('accuracy_rote', order_by='结束日期 desc', limit=1)
|
df4 = sqlitedb.select_data(
|
||||||
|
'accuracy_rote', order_by='结束日期 desc', limit=1)
|
||||||
df4 = df4.T
|
df4 = df4.T
|
||||||
df4 = df4.reset_index()
|
df4 = df4.reset_index()
|
||||||
df4 = df4.T
|
df4 = df4.T
|
||||||
@ -3524,6 +3527,17 @@ def pp_export_pdf(num_indicators=475, num_models=21, num_dayindicator=202, input
|
|||||||
print(f"请求超时: {e}")
|
print(f"请求超时: {e}")
|
||||||
|
|
||||||
|
|
||||||
|
@exception_logger
|
||||||
|
def pp_bdwd_png(global_config):
|
||||||
|
best_bdwd_price = find_best_models(
|
||||||
|
date=global_config['end_time'], global_config=global_config)
|
||||||
|
# y_hat = pd.DataFrame(best_bdwd_price).T[['date', 'predictresult']][-4:]
|
||||||
|
y_hat = pd.DataFrame(best_bdwd_price).T[['date', 'predictresult']]
|
||||||
|
y_hat['ds'] = pd.to_datetime(y_hat['date'])
|
||||||
|
# 绘制PP期货预测结果的图表
|
||||||
|
plot_pp_predict_result(y_hat, global_config)
|
||||||
|
|
||||||
|
|
||||||
def pp_export_pdf_v1(num_indicators=475, num_models=21, num_dayindicator=202, inputsize=5, dataset='dataset', time='2024-07-30', reportname='report.pdf'):
|
def pp_export_pdf_v1(num_indicators=475, num_models=21, num_dayindicator=202, inputsize=5, dataset='dataset', time='2024-07-30', reportname='report.pdf'):
|
||||||
global y
|
global y
|
||||||
# 创建内容对应的空列表
|
# 创建内容对应的空列表
|
||||||
|
Loading…
Reference in New Issue
Block a user