注释代码备份
This commit is contained in:
parent
506c9038c9
commit
e8ecec120a
494
codeback.py
Normal file
494
codeback.py
Normal file
@ -0,0 +1,494 @@
|
||||
|
||||
################################### 报告内容 ##################################
|
||||
|
||||
# 根据真实值分组,去掉最高最小预测值画图逻辑
|
||||
# content.append(Graphs.draw_text('图示说明:'))
|
||||
# content.append(Graphs.draw_text('1. 将所有模型的预测结果进行分组,大于真实值的为一组,小于真实值的为一组,去掉最高的预测值,去掉最小的预测值'))
|
||||
# content.append(Graphs.draw_text('2. 确定通道上界:在大于真实值的分组中,取最大的预测值'))
|
||||
# content.append(Graphs.draw_text('3. 确定通道下界:在小于真实值的分组中,取第二小的预测值'))
|
||||
# content.append(Graphs.draw_text('4. 预测结果没有真实值作为参考依据,通道上界取近20个交易日内预测在上界值的模型对应的预测值,通道下界同理;'))
|
||||
# content.append(Graphs.draw_text('5. 预测结果选用近20个交易日内,最多接近真实值的模型的预测值对应的预测结果;'))
|
||||
# content.append(Graphs.draw_text('6. 预测结果在通道外的,代表最接近真实值的预测结果不在置信波动范围内。'))
|
||||
# 波动率画图逻辑
|
||||
# content.append(Graphs.draw_text('图示说明:'))
|
||||
# content.append(Graphs.draw_text('1. 确定波动率置信区间:统计近60个交易日的真实价格波动率,找出在 10% ,90% 的分位值作为波动率置信区间;'))
|
||||
# content.append(Graphs.draw_text('2. 确定通道上界:在所有模型的预测结果中 <= 前一天真实价格 乘以 90%的置信波动分位数'))
|
||||
# content.append(Graphs.draw_text('3. 确定通道下界:在所有模型的预测结果中 >= 前一天真实价格 乘以 10%的置信波动分位数'))
|
||||
# content.append(Graphs.draw_text('4. 预测结果没有真实值作为参考依据,通道上界取近20个交易日内预测在上界值的模型对应的预测值,通道下界同理;'))
|
||||
# content.append(Graphs.draw_text('5. 预测结果选用近20个交易日内,最多接近真实值的模型的预测值对应的预测结果;'))
|
||||
# content.append(Graphs.draw_text('6. 预测结果在通道外的,代表最接近真实值的预测结果不在置信波动范围内。'))
|
||||
|
||||
# # 计算特征相关性
|
||||
# data.rename(columns={y: 'y'}, inplace=True)
|
||||
# data['ds'] = pd.to_datetime(data['ds'])
|
||||
# data.drop(columns=['ds'], inplace=True)
|
||||
# # 创建一个空的 DataFrame 来保存相关系数
|
||||
# correlation_df = pd.DataFrame(columns=['Feature', 'Correlation'])
|
||||
# # 计算各特征与目标列的皮尔逊相关系数,并保存到新的 Data 中
|
||||
# for col in data.columns:
|
||||
# if col!= 'y':
|
||||
# pearson_correlation = np.corrcoef(data[col], data['y'])[0, 1]
|
||||
# spearman_correlation, _ = spearmanr(data[col], data['y'])
|
||||
# new_row = {'Feature': col, 'Pearson_Correlation': round(pearson_correlation,3), 'Spearman_Correlation': round(spearman_correlation,2)}
|
||||
# correlation_df = correlation_df._append(new_row, ignore_index=True)
|
||||
|
||||
# correlation_df.drop('Correlation', axis=1, inplace=True)
|
||||
# correlation_df.dropna(inplace=True)
|
||||
# correlation_df.to_csv(os.path.join(dataset,'指标相关性分析.csv'), index=False)
|
||||
|
||||
# data = correlation_df['Pearson_Correlation'].values.tolist()
|
||||
# # 生成 -1 到 1 的 20 个区间
|
||||
# bins = np.linspace(-1, 1, 21)
|
||||
# # 计算每个区间的统计数(这里是区间内数据的数量)
|
||||
# hist_values = [np.sum((data >= bins[i]) & (data < bins[i + 1])) for i in range(len(bins) - 1)]
|
||||
|
||||
# #设置画布大小
|
||||
# plt.figure(figsize=(10, 6))
|
||||
# # 绘制直方图
|
||||
# plt.bar(bins[:-1], hist_values, width=(bins[1] - bins[0]))
|
||||
|
||||
# # 添加标题和坐标轴标签
|
||||
# plt.title('皮尔逊相关系数分布图')
|
||||
# plt.xlabel('区间')
|
||||
# plt.ylabel('统计数')
|
||||
# plt.savefig(os.path.join(dataset, '皮尔逊相关性系数.png'))
|
||||
# plt.close()
|
||||
|
||||
|
||||
# #设置画布大小
|
||||
# plt.figure(figsize=(10, 6))
|
||||
# data = correlation_df['Spearman_Correlation'].values.tolist()
|
||||
# # 计算每个区间的统计数(这里是区间内数据的数量)
|
||||
# hist_values = [np.sum((data >= bins[i]) & (data < bins[i + 1])) for i in range(len(bins) - 1)]
|
||||
|
||||
# # 绘制直方图
|
||||
# plt.bar(bins[:-1], hist_values, width=(bins[1] - bins[0]))
|
||||
|
||||
# # 添加标题和坐标轴标签
|
||||
# plt.title('斯皮尔曼相关系数分布图')
|
||||
# plt.xlabel('区间')
|
||||
# plt.ylabel('统计数')
|
||||
# plt.savefig(os.path.join(dataset, '斯皮尔曼相关性系数.png'))
|
||||
# plt.close()
|
||||
# content.append(Graphs.draw_text(f'指标相关性分析--皮尔逊相关系数:'))
|
||||
# # 皮尔逊正相关 不相关 负相关 的表格
|
||||
# content.append(Graphs.draw_img(os.path.join(dataset,'皮尔逊相关性系数.png')))
|
||||
# content.append(Graphs.draw_text('''皮尔逊相关系数说明:'''))
|
||||
# content.append(Graphs.draw_text('''衡量两个特征之间的线性相关性。'''))
|
||||
# content.append(Graphs.draw_text('''
|
||||
# 相关系数为1:表示两个变量之间存在完全正向的线性关系,即当一个变量增加时,另一个变量也相应增加,且变化是完全一致的。'''))
|
||||
# content.append(Graphs.draw_text('''当前特征中正相关前十的有:'''))
|
||||
# top10_columns = correlation_df.sort_values(by='Pearson_Correlation',ascending=False).head(10)['Feature'].to_list()
|
||||
# top10 = ','.join(top10_columns)
|
||||
# content.append(Graphs.draw_text(f'''{top10}'''))
|
||||
|
||||
# feature_df = feature_data_df[['ds','y']+top10_columns]
|
||||
# # 遍历X每一列,和yy画散点图 ,
|
||||
# for i, col in enumerate(feature_df.columns):
|
||||
# print(f'正在绘制第{i+1}个特征{col}与价格散点图...')
|
||||
# if col not in ['ds', 'y']:
|
||||
# fig, ax1 = plt.subplots(figsize=(10, 6))
|
||||
# # 在第一个坐标轴上绘制数据
|
||||
# ax1.plot(feature_df['ds'], feature_df['y'], 'b-')
|
||||
# ax1.set_xlabel('日期')
|
||||
# ax1.set_ylabel('y', color='b')
|
||||
# ax1.tick_params('y', colors='b')
|
||||
# # 在 ax1 上添加文本显示值,添加一定的偏移避免值与曲线重叠
|
||||
# for j in range(1,len(feature_df),2):
|
||||
# value = feature_df['y'].iloc[j]
|
||||
# date = feature_df['ds'].iloc[j]
|
||||
# offset = 1.001
|
||||
# ax1.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='b', fontsize=10)
|
||||
# # 创建第二个坐标轴
|
||||
# ax2 = ax1.twinx()
|
||||
# # 在第二个坐标轴上绘制数据
|
||||
# line2 = ax2.plot(feature_df['ds'], feature_df[col], 'r-')
|
||||
# ax2.set_ylabel(col, color='r')
|
||||
# ax2.tick_params('y', colors='r')
|
||||
# # 在 ax2 上添加文本显示值,添加一定的偏移避免值与曲线重叠
|
||||
# for j in range(0,len(feature_df),2):
|
||||
# value = feature_df[col].iloc[j]
|
||||
# date = feature_df['ds'].iloc[j]
|
||||
# offset = 1.001
|
||||
# ax2.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='r', fontsize=10)
|
||||
# # 添加标题
|
||||
# plt.title(col)
|
||||
# # 设置横坐标为日期格式并自动调整
|
||||
# locator = mdates.AutoDateLocator()
|
||||
# formatter = mdates.AutoDateFormatter(locator)
|
||||
# ax1.xaxis.set_major_locator(locator)
|
||||
# ax1.xaxis.set_major_formatter(formatter)
|
||||
# # 文件名特殊字符处理
|
||||
# col = col.replace('*', '-')
|
||||
# col = col.replace(':', '-')
|
||||
# plt.savefig(os.path.join(dataset, f'{col}与价格散点图.png'))
|
||||
# content.append(Graphs.draw_img(os.path.join(dataset, f'{col}与价格散点图.png')))
|
||||
# plt.close()
|
||||
|
||||
|
||||
# content.append(Graphs.draw_text(f'指标相关性分析--斯皮尔曼相关系数:'))
|
||||
# # 皮尔逊正相关 不相关 负相关 的表格
|
||||
# content.append(Graphs.draw_img(os.path.join(dataset,'斯皮尔曼相关性系数.png')))
|
||||
# content.append(Graphs.draw_text('斯皮尔曼相关系数(Spearmans rank correlation coefficient)是一种用于衡量两个变量之间的单调关系(不一定是线性关系)的统计指标。'))
|
||||
# content.append(Graphs.draw_text('它的计算基于变量的秩次(即变量值的排序位置)而非变量的原始值。'))
|
||||
# content.append(Graphs.draw_text('斯皮尔曼相关系数的取值范围在 -1 到 1 之间。'))
|
||||
# content.append(Graphs.draw_text('当系数为 1 时,表示两个变量之间存在完全正的单调关系;'))
|
||||
# content.append(Graphs.draw_text('''当前特征中正单调关系前十的有:'''))
|
||||
# top10_columns = correlation_df.sort_values(by='Spearman_Correlation',ascending=False).head(10)['Feature'].to_list()
|
||||
# top10 = ','.join(top10_columns)
|
||||
# content.append(Graphs.draw_text(f'''{top10}'''))
|
||||
|
||||
# feature_df = feature_data_df[['ds','y']+top10_columns]
|
||||
# # 遍历X每一列,和yy画散点图 ,
|
||||
# for i, col in enumerate(feature_df.columns):
|
||||
# print(f'正在绘制第{i+1}个特征{col}与价格散点图...')
|
||||
# if col not in ['ds', 'y']:
|
||||
# fig, ax1 = plt.subplots(figsize=(10, 6))
|
||||
# # 在第一个坐标轴上绘制数据
|
||||
# ax1.plot(feature_df['ds'], feature_df['y'], 'b-')
|
||||
# ax1.set_xlabel('日期')
|
||||
# ax1.set_ylabel('y', color='b')
|
||||
# ax1.tick_params('y', colors='b')
|
||||
# # 在 ax1 上添加文本显示值,添加一定的偏移避免值与曲线重叠
|
||||
# for j in range(1,len(feature_df),2):
|
||||
# value = feature_df['y'].iloc[j]
|
||||
# date = feature_df['ds'].iloc[j]
|
||||
# offset = 1.001
|
||||
# ax1.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='b', fontsize=10)
|
||||
# # 创建第二个坐标轴
|
||||
# ax2 = ax1.twinx()
|
||||
# # 在第二个坐标轴上绘制数据
|
||||
# line2 = ax2.plot(feature_df['ds'], feature_df[col], 'r-')
|
||||
# ax2.set_ylabel(col, color='r')
|
||||
# ax2.tick_params('y', colors='r')
|
||||
# # 在 ax2 上添加文本显示值,添加一定的偏移避免值与曲线重叠
|
||||
# for j in range(0,len(feature_df),2):
|
||||
# value = feature_df[col].iloc[j]
|
||||
# date = feature_df['ds'].iloc[j]
|
||||
# offset = 1.001
|
||||
# ax2.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='r', fontsize=10)
|
||||
# # 添加标题
|
||||
# plt.title(col)
|
||||
# # 设置横坐标为日期格式并自动调整
|
||||
# locator = mdates.AutoDateLocator()
|
||||
# formatter = mdates.AutoDateFormatter(locator)
|
||||
# ax1.xaxis.set_major_locator(locator)
|
||||
# ax1.xaxis.set_major_formatter(formatter)
|
||||
# # 文件名特殊字符处理
|
||||
# col = col.replace('*', '-')
|
||||
# col = col.replace(':', '-')
|
||||
# plt.savefig(os.path.join(dataset, f'{col}与价格散点图.png'))
|
||||
# content.append(Graphs.draw_img(os.path.join(dataset, f'{col}与价格散点图.png')))
|
||||
# plt.close()
|
||||
|
||||
# content.append(Graphs.draw_text('当系数为 -1 时,表示存在完全负的单调关系;'))
|
||||
# content.append(Graphs.draw_text('''当前特征中负单调关系前十的有:'''))
|
||||
# tail10_columns = correlation_df.sort_values(by='Spearman_Correlation',ascending=True).head(10)['Feature'].to_list()
|
||||
# top10 = ','.join(tail10_columns)
|
||||
# content.append(Graphs.draw_text(f'''{top10}'''))
|
||||
# # 获取特征的近一周值
|
||||
# feature_df = feature_data_df[['ds','y']+tail10_columns]
|
||||
# # 遍历X每一列,和yy画散点图 ,
|
||||
# for i, col in enumerate(feature_df.columns):
|
||||
# print(f'正在绘制第{i+1}个特征{col}与价格散点图...')
|
||||
# if col not in ['ds', 'y']:
|
||||
# fig, ax1 = plt.subplots(figsize=(10, 6))
|
||||
# # 在第一个坐标轴上绘制数据
|
||||
# ax1.plot(feature_df['ds'], feature_df['y'], 'b-')
|
||||
# ax1.set_xlabel('日期')
|
||||
# ax1.set_ylabel('y', color='b')
|
||||
# ax1.tick_params('y', colors='b')
|
||||
# # 在 ax1 上添加文本显示值,添加一定的偏移避免值与曲线重叠
|
||||
# for j in range(len(feature_df)):
|
||||
# if j%2 == 1:
|
||||
# value = feature_df['y'].iloc[j]
|
||||
# date = feature_df['ds'].iloc[j]
|
||||
# offset = 1.001
|
||||
# ax1.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='b', fontsize=10)
|
||||
# # 创建第二个坐标轴
|
||||
# ax2 = ax1.twinx()
|
||||
# # 在第二个坐标轴上绘制数据
|
||||
# line2 = ax2.plot(feature_df['ds'], feature_df[col], 'r-')
|
||||
# ax2.set_ylabel(col, color='r')
|
||||
# ax2.tick_params('y', colors='r')
|
||||
# # 在 ax2 上添加文本显示值,添加一定的偏移避免值与曲线重叠
|
||||
# for j in range(1,len(feature_df),2):
|
||||
# value = feature_df[col].iloc[j]
|
||||
# date = feature_df['ds'].iloc[j]
|
||||
# offset = 1.001
|
||||
# ax2.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='r', fontsize=10)
|
||||
# # 添加标题
|
||||
# plt.title(col)
|
||||
# # 设置横坐标为日期格式并自动调整
|
||||
# locator = mdates.AutoDateLocator()
|
||||
# formatter = mdates.AutoDateFormatter(locator)
|
||||
# ax1.xaxis.set_major_locator(locator)
|
||||
# ax1.xaxis.set_major_formatter(formatter)
|
||||
# # 文件名特殊字符处理
|
||||
# col = col.replace('*', '-')
|
||||
# col = col.replace(':', '-')
|
||||
# plt.savefig(os.path.join(dataset, f'{col}与价格散点图.png'))
|
||||
# content.append(Graphs.draw_img(os.path.join(dataset, f'{col}与价格散点图.png')))
|
||||
# plt.close()
|
||||
# content.append(Graphs.draw_text('当系数为 0 时,表示两个变量之间不存在单调关系。'))
|
||||
# content.append(Graphs.draw_text('与皮尔逊相关系数相比,斯皮尔曼相关系数对于数据中的异常值不敏感,更适用于处理非线性关系或存在极端值的数据。'))
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
################################### 预测值与真实值绘图逻辑 ##################################
|
||||
# # 根据真实值y确定最大最小值,去掉最高最低的预测值
|
||||
# import heapq # 使用堆来找到最大和最小的值
|
||||
# def find_min_max_within_quantile(row):
|
||||
# true_value = row['y']
|
||||
# row.drop(['ds','y'], inplace=True)
|
||||
# row = row.astype(float).round(2)
|
||||
|
||||
# max_heap = []
|
||||
# min_heap = []
|
||||
# for col in row.index:
|
||||
# # 对比真实值进行分类
|
||||
# if row[col] < true_value:
|
||||
# heapq.heappush(min_heap, row[col])
|
||||
# elif row[col] > true_value:
|
||||
# heapq.heappush(max_heap, -row[col]) # 使用负号来实现最大堆
|
||||
|
||||
# if len(max_heap) == 1:
|
||||
# max_y = max_heap[0]
|
||||
# elif len(max_heap) == 0:
|
||||
# max_y = -min_heap[-1]
|
||||
# else:
|
||||
# max_y = heapq.nsmallest(2, max_heap)[1]
|
||||
|
||||
# if len(min_heap) < 2 :
|
||||
# min_y = -max_heap[-1]
|
||||
# else:
|
||||
# min_y = heapq.nsmallest(2, min_heap)[-1]
|
||||
|
||||
|
||||
# # 获取最大和最小的值
|
||||
# q10 = min_y
|
||||
# q90 = -max_y
|
||||
|
||||
# # 获取最大和最小的模型名称
|
||||
# min_model = row[row == q10].idxmin()
|
||||
# max_model = row[row == q90].idxmax()
|
||||
|
||||
# # 设置上下界比例
|
||||
# rote = 1
|
||||
|
||||
# q10 = q10 * rote
|
||||
# q90 = q90 * rote
|
||||
|
||||
# logger.info(min_model,q10,max_model,q90)
|
||||
|
||||
# return pd.Series([q10, q90, min_model, max_model], index=['min_within_quantile', 'max_within_quantile', 'min_model', 'max_model'])
|
||||
# # # 遍历行
|
||||
# df_combined3[['min_within_quantile', 'max_within_quantile','min_model','max_model']] = df_combined3.apply(find_min_max_within_quantile, axis=1)
|
||||
# df_combined = df_combined.round(4)
|
||||
# print(df_combined3)
|
||||
|
||||
#使用最佳五个模型进行绘图
|
||||
# best_models = pd.read_csv(os.path.join(dataset,'best_modelnames.txt'),header=None).values.flatten().tolist()
|
||||
# def find_min_max_within_quantile(row):
|
||||
# row = row[best_models]
|
||||
# q10 = row.min()
|
||||
# q90 = row.max()
|
||||
# # 获取 row行最大最小值模型名称
|
||||
# min_model = row[row == q10].idxmin()
|
||||
# max_model = row[row == q90].idxmin()
|
||||
|
||||
# # # 判断flot值是否为空值
|
||||
# # if pd.isna(q10) or pd.isna(q90):
|
||||
# return pd.Series([q10, q90,min_model,max_model], index=['min_within_quantile','max_within_quantile','min_model','max_model'])
|
||||
|
||||
# # 遍历行
|
||||
# df_combined3[['min_within_quantile', 'max_within_quantile','min_model','max_model']] = df_combined3.apply(find_min_max_within_quantile, axis=1)
|
||||
# df_combined = df_combined.round(4)
|
||||
# print(df_combined3)
|
||||
|
||||
# # 通道使用模型评估前80%作为置信度
|
||||
# def find_min_max_within_quantile(row):
|
||||
# row.drop(['ds','y'], inplace=True)
|
||||
# row = row.astype(float).round(2)
|
||||
|
||||
# row_sorted = row
|
||||
# # 计算 10% 和 90% 位置的索引
|
||||
# index_10 = 0
|
||||
# index_90 = int(len(row_sorted) * 0.8)
|
||||
# q10 = row_sorted[index_10]
|
||||
# q90 = row_sorted[index_90]
|
||||
# # 获取模型名称
|
||||
# min_model = row[row == q10].idxmin()
|
||||
# max_model = row[row == q90].idxmin()
|
||||
|
||||
|
||||
# # # 判断flot值是否为空值
|
||||
# # if pd.isna(q10) or pd.isna(q90):
|
||||
# return pd.Series([q10, q90,min_model,max_model], index=['min_within_quantile','max_within_quantile','min_model','max_model'])
|
||||
|
||||
# # 重新排列
|
||||
# df_combined3 = df_combined3[['ds','y'] + allmodelnames]
|
||||
# # 遍历行
|
||||
# df_combined3[['min_within_quantile', 'max_within_quantile','min_model','max_model']] = df_combined3.apply(find_min_max_within_quantile, axis=1)
|
||||
# df_combined = df_combined.round(4)
|
||||
# print(df_combined3)
|
||||
|
||||
|
||||
# # 通道使用预测模型的80%置信度
|
||||
# def find_min_max_within_quantile(row):
|
||||
# row.drop(['ds','y'], inplace=True)
|
||||
# row = row.astype(float).round(2)
|
||||
|
||||
# row_sorted = row.sort_values(ascending=True).reset_index(drop=True)
|
||||
# # 计算 10% 和 90% 位置的索引
|
||||
# index_10 = int(len(row_sorted) * 0.1)
|
||||
# index_90 = int(len(row_sorted) * 0.9)
|
||||
# q10 = row_sorted[index_10]
|
||||
# q90 = row_sorted[index_90]
|
||||
# # 获取模型名称
|
||||
# min_model = row[row == q10].idxmin()
|
||||
# max_model = row[row == q90].idxmin()
|
||||
|
||||
|
||||
# # # 判断flot值是否为空值
|
||||
# # if pd.isna(q10) or pd.isna(q90):
|
||||
# return pd.Series([q10, q90,min_model,max_model], index=['min_within_quantile','max_within_quantile','min_model','max_model'])
|
||||
|
||||
# # 遍历行
|
||||
# df_combined3[['min_within_quantile', 'max_within_quantile','min_model','max_model']] = df_combined3.apply(find_min_max_within_quantile, axis=1)
|
||||
# df_combined = df_combined.round(4)
|
||||
# print(df_combined3)
|
||||
|
||||
|
||||
|
||||
|
||||
# # 计算波动率
|
||||
# df_combined3['volatility'] = df_combined3['y'].pct_change().round(4)
|
||||
# # 计算近60日的波动率 10% 90%分位数
|
||||
# df_combined3['quantile_10'] = df_combined3['volatility'].rolling(60).quantile(0.1)
|
||||
# df_combined3['quantile_90'] = df_combined3['volatility'].rolling(60).quantile(0.9)
|
||||
# df_combined3 = df_combined3.round(4)
|
||||
# # 计算分位数对应的价格
|
||||
# df_combined3['quantile_10_price'] = df_combined3['y'] * (1 + df_combined3['quantile_10'])
|
||||
# df_combined3['quantile_90_price'] = df_combined3['y'] * (1 + df_combined3['quantile_90'])
|
||||
|
||||
# # 遍历行
|
||||
# def find_min_max_within_quantile(row):
|
||||
# # 获取分位数10%和90%的值
|
||||
# q10 = row['quantile_10_price']
|
||||
# q90 = row['quantile_90_price']
|
||||
|
||||
# # 判断flot值是否为空值
|
||||
# if pd.isna(q10) or pd.isna(q90):
|
||||
# return pd.Series([None, None, None, None], index=['min_within_quantile','max_within_quantile','min_model','max_model'])
|
||||
|
||||
# # 初始化最小和最大值为None
|
||||
# min_value = None
|
||||
# max_value = None
|
||||
# min_value_model = ''
|
||||
# max_value_model = ''
|
||||
|
||||
|
||||
# # 遍历指定列,找出在分位数范围内的最大最小值
|
||||
# for model in modelnames:
|
||||
# value = row[model]
|
||||
# if value >= q10 and value <= q90:
|
||||
# if min_value is None or value < min_value:
|
||||
# min_value = value
|
||||
# min_value_model = model
|
||||
|
||||
# if max_value is None or value > max_value:
|
||||
# max_value = value
|
||||
# max_value_model = model
|
||||
|
||||
# 返回最大最小值
|
||||
# return pd.Series([min_value, max_value,min_value_model,max_value_model], index=['min_within_quantile', 'max_within_quantile','min_model','max_model'])
|
||||
|
||||
# # # 应用函数到每一行
|
||||
# df_combined3[['min_within_quantile', 'max_within_quantile','min_model','max_model']] = df_combined3.apply(find_min_max_within_quantile, axis=1)
|
||||
|
||||
# # 去除有空值的行
|
||||
# df_combined3.dropna(inplace=True)
|
||||
# # # 保存到数据库
|
||||
# df_combined3.to_sql('testandpredict_groupby', sqlitedb.connection, if_exists='replace', index=False)
|
||||
# df_combined3.to_csv(os.path.join(dataset,"testandpredict_groupby.csv"),index=False)
|
||||
|
||||
|
||||
# # 去掉方差最大的模型,其余模型预测最大最小值确定通道边界
|
||||
|
||||
|
||||
# # 历史数据+预测数据
|
||||
# # 拼接未来时间预测
|
||||
# df_predict = loadcsv(os.path.join(dataset,'predict.csv'))
|
||||
# df_predict.drop('unique_id',inplace=True,axis=1)
|
||||
# df_predict.dropna(axis=1,inplace=True)
|
||||
# df_predict2 = df_predict.copy()
|
||||
# try:
|
||||
# df_predict['ds'] = pd.to_datetime(df_predict['ds'],format=r'%Y-%m-%d')
|
||||
# except ValueError :
|
||||
# df_predict['ds'] = pd.to_datetime(df_predict['ds'],format=r'%Y/%m/%d')
|
||||
|
||||
# # 取第一行数据存储到数据库中
|
||||
# first_row = df_predict.head(1)
|
||||
# first_row['ds'] = first_row['ds'].dt.strftime('%Y-%m-%d 00:00:00')
|
||||
|
||||
# # # 将预测结果保存到数据库
|
||||
# df_combined3 = pd.concat([df_combined3, df_predict]).reset_index(drop=True)
|
||||
# # # 判断 df 的数值列转为float
|
||||
# for col in df_combined3.columns:
|
||||
# try:
|
||||
# if col != 'ds':
|
||||
# df_combined3[col] = df_combined3[col].astype(float)
|
||||
# df_combined3[col] = df_combined3[col].round(2)
|
||||
# except ValueError:
|
||||
# pass
|
||||
# df_combined3.to_csv(os.path.join(dataset,"testandpredict_groupby.csv"),index=False)
|
||||
# df_combined3['ds'] = df_combined3['ds'].dt.strftime('%Y-%m-%d 00:00:00')
|
||||
# # # 判断表存在
|
||||
# if not sqlitedb.check_table_exists('testandpredict_groupby'):
|
||||
# df_combined3.to_sql('testandpredict_groupby',sqlitedb.connection,index=False)
|
||||
# else:
|
||||
# for row in df_combined3.itertuples(index=False):
|
||||
# row_dict = row._asdict()
|
||||
# check_query = sqlitedb.select_data('testandpredict_groupby',where_condition = f"ds = '{row.ds}'")
|
||||
# if len(check_query) > 0:
|
||||
# set_clause = ", ".join([f"{key} = '{value}'" for key, value in row_dict.items()])
|
||||
# sqlitedb.update_data('testandpredict_groupby',set_clause,where_condition = f"ds = '{row.ds}'")
|
||||
# continue
|
||||
# sqlitedb.insert_data('testandpredict_groupby',tuple(row_dict.values()),columns=row_dict.keys())
|
||||
|
||||
# ten_models = allmodelnames
|
||||
# # 计算每个模型的方差
|
||||
# variances = df_combined3[ten_models].var()
|
||||
# # 找到方差最大的模型
|
||||
# max_variance_model = variances.idxmax()
|
||||
# # 打印方差最大的模型
|
||||
# print("方差最大的模型是:", max_variance_model)
|
||||
# # 去掉方差最大的模型
|
||||
# df_combined3 = df_combined3.drop(columns=[max_variance_model])
|
||||
# if max_variance_model in allmodelnames:
|
||||
# allmodelnames.remove(max_variance_model)
|
||||
# df_combined3['min'] = df_combined3[allmodelnames].min(axis=1)
|
||||
# df_combined3['max'] = df_combined3[allmodelnames].max(axis=1)
|
||||
# print(df_combined3[['min','max']])
|
||||
# # 历史价格+预测价格
|
||||
# df_combined3 = df_combined3[-50:] # 取50个数据点画图
|
||||
# plt.figure(figsize=(20, 10))
|
||||
# plt.plot(df_combined3['ds'], df_combined3['y'], label='真实值',marker='o')
|
||||
# plt.plot(df_combined3['ds'], df_combined3[most_model], label=most_model_name)
|
||||
# plt.fill_between(df_combined3['ds'], df_combined3['min'], df_combined3['max'], alpha=0.2)
|
||||
# plt.grid(True)
|
||||
# # # 显示历史值
|
||||
# for i, j in zip(df_combined3['ds'][:-5], df_combined3['y'][:-5]):
|
||||
# plt.text(i, j, str(j), ha='center', va='bottom')
|
||||
# # 当前日期画竖虚线
|
||||
# plt.axvline(x=df_combined3['ds'].iloc[-horizon], color='r', linestyle='--')
|
||||
# plt.legend()
|
||||
# plt.xlabel('日期')
|
||||
# plt.ylabel('价格')
|
||||
|
||||
# plt.savefig(os.path.join(dataset,'历史价格-预测值.png'), bbox_inches='tight')
|
||||
# plt.close()
|
@ -218,7 +218,7 @@ def ex_Model(df,horizon,input_size,train_steps,val_check_steps,early_stop_patien
|
||||
return nf_test_preds
|
||||
|
||||
|
||||
# 计算预测评估指数
|
||||
# 原油计算预测评估指数
|
||||
def model_losss(sqlitedb):
|
||||
global dataset
|
||||
# 预测数据处理 predict
|
||||
@ -483,10 +483,7 @@ def model_losss(sqlitedb):
|
||||
plt.close()
|
||||
return model_results3
|
||||
|
||||
|
||||
|
||||
|
||||
# 计算预测评估指数
|
||||
# 聚烯烃计算预测评估指数
|
||||
def model_losss_juxiting(sqlitedb):
|
||||
global dataset
|
||||
global rote
|
||||
@ -619,264 +616,6 @@ def model_losss_juxiting(sqlitedb):
|
||||
df_combined3[['upper_bound','lower_bound']] = names_df.apply(add_upper_lower_bound, axis=1)
|
||||
|
||||
|
||||
|
||||
|
||||
# # 根据真实值y确定最大最小值,去掉最高最低的预测值
|
||||
# import heapq # 使用堆来找到最大和最小的值
|
||||
# def find_min_max_within_quantile(row):
|
||||
# true_value = row['y']
|
||||
# row.drop(['ds','y'], inplace=True)
|
||||
# row = row.astype(float).round(2)
|
||||
|
||||
# max_heap = []
|
||||
# min_heap = []
|
||||
# for col in row.index:
|
||||
# # 对比真实值进行分类
|
||||
# if row[col] < true_value:
|
||||
# heapq.heappush(min_heap, row[col])
|
||||
# elif row[col] > true_value:
|
||||
# heapq.heappush(max_heap, -row[col]) # 使用负号来实现最大堆
|
||||
|
||||
# if len(max_heap) == 1:
|
||||
# max_y = max_heap[0]
|
||||
# elif len(max_heap) == 0:
|
||||
# max_y = -min_heap[-1]
|
||||
# else:
|
||||
# max_y = heapq.nsmallest(2, max_heap)[1]
|
||||
|
||||
# if len(min_heap) < 2 :
|
||||
# min_y = -max_heap[-1]
|
||||
# else:
|
||||
# min_y = heapq.nsmallest(2, min_heap)[-1]
|
||||
|
||||
|
||||
# # 获取最大和最小的值
|
||||
# q10 = min_y
|
||||
# q90 = -max_y
|
||||
|
||||
# # 获取最大和最小的模型名称
|
||||
# min_model = row[row == q10].idxmin()
|
||||
# max_model = row[row == q90].idxmax()
|
||||
|
||||
# # 设置上下界比例
|
||||
# rote = 1
|
||||
|
||||
# q10 = q10 * rote
|
||||
# q90 = q90 * rote
|
||||
|
||||
# logger.info(min_model,q10,max_model,q90)
|
||||
|
||||
# return pd.Series([q10, q90, min_model, max_model], index=['min_within_quantile', 'max_within_quantile', 'min_model', 'max_model'])
|
||||
# # # 遍历行
|
||||
# df_combined3[['min_within_quantile', 'max_within_quantile','min_model','max_model']] = df_combined3.apply(find_min_max_within_quantile, axis=1)
|
||||
# df_combined = df_combined.round(4)
|
||||
# print(df_combined3)
|
||||
|
||||
#使用最佳五个模型进行绘图
|
||||
# best_models = pd.read_csv(os.path.join(dataset,'best_modelnames.txt'),header=None).values.flatten().tolist()
|
||||
# def find_min_max_within_quantile(row):
|
||||
# row = row[best_models]
|
||||
# q10 = row.min()
|
||||
# q90 = row.max()
|
||||
# # 获取 row行最大最小值模型名称
|
||||
# min_model = row[row == q10].idxmin()
|
||||
# max_model = row[row == q90].idxmin()
|
||||
|
||||
# # # 判断flot值是否为空值
|
||||
# # if pd.isna(q10) or pd.isna(q90):
|
||||
# return pd.Series([q10, q90,min_model,max_model], index=['min_within_quantile','max_within_quantile','min_model','max_model'])
|
||||
|
||||
# # 遍历行
|
||||
# df_combined3[['min_within_quantile', 'max_within_quantile','min_model','max_model']] = df_combined3.apply(find_min_max_within_quantile, axis=1)
|
||||
# df_combined = df_combined.round(4)
|
||||
# print(df_combined3)
|
||||
|
||||
# # 通道使用模型评估前80%作为置信度
|
||||
# def find_min_max_within_quantile(row):
|
||||
# row.drop(['ds','y'], inplace=True)
|
||||
# row = row.astype(float).round(2)
|
||||
|
||||
# row_sorted = row
|
||||
# # 计算 10% 和 90% 位置的索引
|
||||
# index_10 = 0
|
||||
# index_90 = int(len(row_sorted) * 0.8)
|
||||
# q10 = row_sorted[index_10]
|
||||
# q90 = row_sorted[index_90]
|
||||
# # 获取模型名称
|
||||
# min_model = row[row == q10].idxmin()
|
||||
# max_model = row[row == q90].idxmin()
|
||||
|
||||
|
||||
# # # 判断flot值是否为空值
|
||||
# # if pd.isna(q10) or pd.isna(q90):
|
||||
# return pd.Series([q10, q90,min_model,max_model], index=['min_within_quantile','max_within_quantile','min_model','max_model'])
|
||||
|
||||
# # 重新排列
|
||||
# df_combined3 = df_combined3[['ds','y'] + allmodelnames]
|
||||
# # 遍历行
|
||||
# df_combined3[['min_within_quantile', 'max_within_quantile','min_model','max_model']] = df_combined3.apply(find_min_max_within_quantile, axis=1)
|
||||
# df_combined = df_combined.round(4)
|
||||
# print(df_combined3)
|
||||
|
||||
|
||||
# # 通道使用预测模型的80%置信度
|
||||
# def find_min_max_within_quantile(row):
|
||||
# row.drop(['ds','y'], inplace=True)
|
||||
# row = row.astype(float).round(2)
|
||||
|
||||
# row_sorted = row.sort_values(ascending=True).reset_index(drop=True)
|
||||
# # 计算 10% 和 90% 位置的索引
|
||||
# index_10 = int(len(row_sorted) * 0.1)
|
||||
# index_90 = int(len(row_sorted) * 0.9)
|
||||
# q10 = row_sorted[index_10]
|
||||
# q90 = row_sorted[index_90]
|
||||
# # 获取模型名称
|
||||
# min_model = row[row == q10].idxmin()
|
||||
# max_model = row[row == q90].idxmin()
|
||||
|
||||
|
||||
# # # 判断flot值是否为空值
|
||||
# # if pd.isna(q10) or pd.isna(q90):
|
||||
# return pd.Series([q10, q90,min_model,max_model], index=['min_within_quantile','max_within_quantile','min_model','max_model'])
|
||||
|
||||
# # 遍历行
|
||||
# df_combined3[['min_within_quantile', 'max_within_quantile','min_model','max_model']] = df_combined3.apply(find_min_max_within_quantile, axis=1)
|
||||
# df_combined = df_combined.round(4)
|
||||
# print(df_combined3)
|
||||
|
||||
|
||||
|
||||
|
||||
# # 计算波动率
|
||||
# df_combined3['volatility'] = df_combined3['y'].pct_change().round(4)
|
||||
# # 计算近60日的波动率 10% 90%分位数
|
||||
# df_combined3['quantile_10'] = df_combined3['volatility'].rolling(60).quantile(0.1)
|
||||
# df_combined3['quantile_90'] = df_combined3['volatility'].rolling(60).quantile(0.9)
|
||||
# df_combined3 = df_combined3.round(4)
|
||||
# # 计算分位数对应的价格
|
||||
# df_combined3['quantile_10_price'] = df_combined3['y'] * (1 + df_combined3['quantile_10'])
|
||||
# df_combined3['quantile_90_price'] = df_combined3['y'] * (1 + df_combined3['quantile_90'])
|
||||
|
||||
# # 遍历行
|
||||
# def find_min_max_within_quantile(row):
|
||||
# # 获取分位数10%和90%的值
|
||||
# q10 = row['quantile_10_price']
|
||||
# q90 = row['quantile_90_price']
|
||||
|
||||
# # 判断flot值是否为空值
|
||||
# if pd.isna(q10) or pd.isna(q90):
|
||||
# return pd.Series([None, None, None, None], index=['min_within_quantile','max_within_quantile','min_model','max_model'])
|
||||
|
||||
# # 初始化最小和最大值为None
|
||||
# min_value = None
|
||||
# max_value = None
|
||||
# min_value_model = ''
|
||||
# max_value_model = ''
|
||||
|
||||
|
||||
# # 遍历指定列,找出在分位数范围内的最大最小值
|
||||
# for model in modelnames:
|
||||
# value = row[model]
|
||||
# if value >= q10 and value <= q90:
|
||||
# if min_value is None or value < min_value:
|
||||
# min_value = value
|
||||
# min_value_model = model
|
||||
|
||||
# if max_value is None or value > max_value:
|
||||
# max_value = value
|
||||
# max_value_model = model
|
||||
|
||||
# # 返回最大最小值
|
||||
# return pd.Series([min_value, max_value,min_value_model,max_value_model], index=['min_within_quantile', 'max_within_quantile','min_model','max_model'])
|
||||
|
||||
# # 应用函数到每一行
|
||||
# df_combined3[['min_within_quantile', 'max_within_quantile','min_model','max_model']] = df_combined3.apply(find_min_max_within_quantile, axis=1)
|
||||
|
||||
# 去除有空值的行
|
||||
# df_combined3.dropna(inplace=True)
|
||||
# # 保存到数据库
|
||||
# df_combined3.to_sql('testandpredict_groupby', sqlitedb.connection, if_exists='replace', index=False)
|
||||
# df_combined3.to_csv(os.path.join(dataset,"testandpredict_groupby.csv"),index=False)
|
||||
|
||||
'''
|
||||
# 去掉方差最大的模型,其余模型预测最大最小值确定通道边界
|
||||
|
||||
|
||||
# 历史数据+预测数据
|
||||
# 拼接未来时间预测
|
||||
df_predict = loadcsv(os.path.join(dataset,'predict.csv'))
|
||||
df_predict.drop('unique_id',inplace=True,axis=1)
|
||||
df_predict.dropna(axis=1,inplace=True)
|
||||
df_predict2 = df_predict.copy()
|
||||
try:
|
||||
df_predict['ds'] = pd.to_datetime(df_predict['ds'],format=r'%Y-%m-%d')
|
||||
except ValueError :
|
||||
df_predict['ds'] = pd.to_datetime(df_predict['ds'],format=r'%Y/%m/%d')
|
||||
|
||||
# 取第一行数据存储到数据库中
|
||||
first_row = df_predict.head(1)
|
||||
first_row['ds'] = first_row['ds'].dt.strftime('%Y-%m-%d 00:00:00')
|
||||
|
||||
# # 将预测结果保存到数据库
|
||||
df_combined3 = pd.concat([df_combined3, df_predict]).reset_index(drop=True)
|
||||
# # 判断 df 的数值列转为float
|
||||
for col in df_combined3.columns:
|
||||
try:
|
||||
if col != 'ds':
|
||||
df_combined3[col] = df_combined3[col].astype(float)
|
||||
df_combined3[col] = df_combined3[col].round(2)
|
||||
except ValueError:
|
||||
pass
|
||||
df_combined3.to_csv(os.path.join(dataset,"testandpredict_groupby.csv"),index=False)
|
||||
df_combined3['ds'] = df_combined3['ds'].dt.strftime('%Y-%m-%d 00:00:00')
|
||||
# # 判断表存在
|
||||
if not sqlitedb.check_table_exists('testandpredict_groupby'):
|
||||
df_combined3.to_sql('testandpredict_groupby',sqlitedb.connection,index=False)
|
||||
else:
|
||||
for row in df_combined3.itertuples(index=False):
|
||||
row_dict = row._asdict()
|
||||
check_query = sqlitedb.select_data('testandpredict_groupby',where_condition = f"ds = '{row.ds}'")
|
||||
if len(check_query) > 0:
|
||||
set_clause = ", ".join([f"{key} = '{value}'" for key, value in row_dict.items()])
|
||||
sqlitedb.update_data('testandpredict_groupby',set_clause,where_condition = f"ds = '{row.ds}'")
|
||||
continue
|
||||
sqlitedb.insert_data('testandpredict_groupby',tuple(row_dict.values()),columns=row_dict.keys())
|
||||
|
||||
ten_models = allmodelnames
|
||||
# 计算每个模型的方差
|
||||
variances = df_combined3[ten_models].var()
|
||||
# 找到方差最大的模型
|
||||
max_variance_model = variances.idxmax()
|
||||
# 打印方差最大的模型
|
||||
print("方差最大的模型是:", max_variance_model)
|
||||
# 去掉方差最大的模型
|
||||
df_combined3 = df_combined3.drop(columns=[max_variance_model])
|
||||
if max_variance_model in allmodelnames:
|
||||
allmodelnames.remove(max_variance_model)
|
||||
df_combined3['min'] = df_combined3[allmodelnames].min(axis=1)
|
||||
df_combined3['max'] = df_combined3[allmodelnames].max(axis=1)
|
||||
print(df_combined3[['min','max']])
|
||||
# 历史价格+预测价格
|
||||
df_combined3 = df_combined3[-50:] # 取50个数据点画图
|
||||
plt.figure(figsize=(20, 10))
|
||||
plt.plot(df_combined3['ds'], df_combined3['y'], label='真实值',marker='o')
|
||||
plt.plot(df_combined3['ds'], df_combined3[most_model], label=most_model_name)
|
||||
plt.fill_between(df_combined3['ds'], df_combined3['min'], df_combined3['max'], alpha=0.2)
|
||||
plt.grid(True)
|
||||
# # 显示历史值
|
||||
for i, j in zip(df_combined3['ds'][:-5], df_combined3['y'][:-5]):
|
||||
plt.text(i, j, str(j), ha='center', va='bottom')
|
||||
# 当前日期画竖虚线
|
||||
plt.axvline(x=df_combined3['ds'].iloc[-horizon], color='r', linestyle='--')
|
||||
plt.legend()
|
||||
plt.xlabel('日期')
|
||||
plt.ylabel('价格')
|
||||
|
||||
plt.savefig(os.path.join(dataset,'历史价格-预测值.png'), bbox_inches='tight')
|
||||
plt.close()
|
||||
'''
|
||||
|
||||
|
||||
def find_most_common_model():
|
||||
# 最多频率的模型名称
|
||||
min_model_max_frequency_model = df_combined3['min_model'].tail(20).value_counts().idxmax()
|
||||
@ -1520,7 +1259,6 @@ def brent_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inpu
|
||||
except TimeoutError as e:
|
||||
print(f"请求超时: {e}")
|
||||
|
||||
|
||||
def pp_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inputsize=5,dataset='dataset',time = '2024-07-30',reportname='report.pdf',sqlitedb='jbsh_yuanyou.db'):
|
||||
global y
|
||||
# 创建内容对应的空列表
|
||||
@ -1578,32 +1316,13 @@ def pp_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inputsi
|
||||
# except Exception as e:
|
||||
# print(f'绘制第{i+1}个特征{col}与价格散点图时出错:{e}')
|
||||
|
||||
|
||||
|
||||
|
||||
### 添加标题
|
||||
content.append(Graphs.draw_title(f'{y}{time}预测报告'))
|
||||
|
||||
### 预测结果
|
||||
content.append(Graphs.draw_little_title('一、预测结果:'))
|
||||
# 添加历史走势及预测价格的走势图片
|
||||
content.append(Graphs.draw_img(os.path.join(dataset,'历史价格-预测值.png')))
|
||||
# 根据真实值分组,去掉最高最小预测值画图逻辑
|
||||
# content.append(Graphs.draw_text('图示说明:'))
|
||||
# content.append(Graphs.draw_text('1. 将所有模型的预测结果进行分组,大于真实值的为一组,小于真实值的为一组,去掉最高的预测值,去掉最小的预测值'))
|
||||
# content.append(Graphs.draw_text('2. 确定通道上界:在大于真实值的分组中,取最大的预测值'))
|
||||
# content.append(Graphs.draw_text('3. 确定通道下界:在小于真实值的分组中,取第二小的预测值'))
|
||||
# content.append(Graphs.draw_text('4. 预测结果没有真实值作为参考依据,通道上界取近20个交易日内预测在上界值的模型对应的预测值,通道下界同理;'))
|
||||
# content.append(Graphs.draw_text('5. 预测结果选用近20个交易日内,最多接近真实值的模型的预测值对应的预测结果;'))
|
||||
# content.append(Graphs.draw_text('6. 预测结果在通道外的,代表最接近真实值的预测结果不在置信波动范围内。'))
|
||||
# 波动率画图逻辑
|
||||
# content.append(Graphs.draw_text('图示说明:'))
|
||||
# content.append(Graphs.draw_text('1. 确定波动率置信区间:统计近60个交易日的真实价格波动率,找出在 10% ,90% 的分位值作为波动率置信区间;'))
|
||||
# content.append(Graphs.draw_text('2. 确定通道上界:在所有模型的预测结果中 <= 前一天真实价格 乘以 90%的置信波动分位数'))
|
||||
# content.append(Graphs.draw_text('3. 确定通道下界:在所有模型的预测结果中 >= 前一天真实价格 乘以 10%的置信波动分位数'))
|
||||
# content.append(Graphs.draw_text('4. 预测结果没有真实值作为参考依据,通道上界取近20个交易日内预测在上界值的模型对应的预测值,通道下界同理;'))
|
||||
# content.append(Graphs.draw_text('5. 预测结果选用近20个交易日内,最多接近真实值的模型的预测值对应的预测结果;'))
|
||||
# content.append(Graphs.draw_text('6. 预测结果在通道外的,代表最接近真实值的预测结果不在置信波动范围内。'))
|
||||
|
||||
|
||||
# 取df中y列为空的行
|
||||
import pandas as pd
|
||||
@ -1755,222 +1474,6 @@ def pp_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inputsi
|
||||
content.append(Graphs.draw_text('气泡图中,横轴为指标分类,纵轴为指标分类下的特征数量,气泡的面积越大表示该分类中特征的相关系数和越大。'))
|
||||
logger.info(f'绘制相关性总和的气泡图结束')
|
||||
|
||||
|
||||
|
||||
# # 计算特征相关性
|
||||
# data.rename(columns={y: 'y'}, inplace=True)
|
||||
# data['ds'] = pd.to_datetime(data['ds'])
|
||||
# data.drop(columns=['ds'], inplace=True)
|
||||
# # 创建一个空的 DataFrame 来保存相关系数
|
||||
# correlation_df = pd.DataFrame(columns=['Feature', 'Correlation'])
|
||||
# # 计算各特征与目标列的皮尔逊相关系数,并保存到新的 Data 中
|
||||
# for col in data.columns:
|
||||
# if col!= 'y':
|
||||
# pearson_correlation = np.corrcoef(data[col], data['y'])[0, 1]
|
||||
# spearman_correlation, _ = spearmanr(data[col], data['y'])
|
||||
# new_row = {'Feature': col, 'Pearson_Correlation': round(pearson_correlation,3), 'Spearman_Correlation': round(spearman_correlation,2)}
|
||||
# correlation_df = correlation_df._append(new_row, ignore_index=True)
|
||||
|
||||
# correlation_df.drop('Correlation', axis=1, inplace=True)
|
||||
# correlation_df.dropna(inplace=True)
|
||||
# correlation_df.to_csv(os.path.join(dataset,'指标相关性分析.csv'), index=False)
|
||||
|
||||
# data = correlation_df['Pearson_Correlation'].values.tolist()
|
||||
# # 生成 -1 到 1 的 20 个区间
|
||||
# bins = np.linspace(-1, 1, 21)
|
||||
# # 计算每个区间的统计数(这里是区间内数据的数量)
|
||||
# hist_values = [np.sum((data >= bins[i]) & (data < bins[i + 1])) for i in range(len(bins) - 1)]
|
||||
|
||||
# #设置画布大小
|
||||
# plt.figure(figsize=(10, 6))
|
||||
# # 绘制直方图
|
||||
# plt.bar(bins[:-1], hist_values, width=(bins[1] - bins[0]))
|
||||
|
||||
# # 添加标题和坐标轴标签
|
||||
# plt.title('皮尔逊相关系数分布图')
|
||||
# plt.xlabel('区间')
|
||||
# plt.ylabel('统计数')
|
||||
# plt.savefig(os.path.join(dataset, '皮尔逊相关性系数.png'))
|
||||
# plt.close()
|
||||
|
||||
|
||||
# #设置画布大小
|
||||
# plt.figure(figsize=(10, 6))
|
||||
# data = correlation_df['Spearman_Correlation'].values.tolist()
|
||||
# # 计算每个区间的统计数(这里是区间内数据的数量)
|
||||
# hist_values = [np.sum((data >= bins[i]) & (data < bins[i + 1])) for i in range(len(bins) - 1)]
|
||||
|
||||
# # 绘制直方图
|
||||
# plt.bar(bins[:-1], hist_values, width=(bins[1] - bins[0]))
|
||||
|
||||
# # 添加标题和坐标轴标签
|
||||
# plt.title('斯皮尔曼相关系数分布图')
|
||||
# plt.xlabel('区间')
|
||||
# plt.ylabel('统计数')
|
||||
# plt.savefig(os.path.join(dataset, '斯皮尔曼相关性系数.png'))
|
||||
# plt.close()
|
||||
# content.append(Graphs.draw_text(f'指标相关性分析--皮尔逊相关系数:'))
|
||||
# # 皮尔逊正相关 不相关 负相关 的表格
|
||||
# content.append(Graphs.draw_img(os.path.join(dataset,'皮尔逊相关性系数.png')))
|
||||
# content.append(Graphs.draw_text('''皮尔逊相关系数说明:'''))
|
||||
# content.append(Graphs.draw_text('''衡量两个特征之间的线性相关性。'''))
|
||||
# content.append(Graphs.draw_text('''
|
||||
# 相关系数为1:表示两个变量之间存在完全正向的线性关系,即当一个变量增加时,另一个变量也相应增加,且变化是完全一致的。'''))
|
||||
# content.append(Graphs.draw_text('''当前特征中正相关前十的有:'''))
|
||||
# top10_columns = correlation_df.sort_values(by='Pearson_Correlation',ascending=False).head(10)['Feature'].to_list()
|
||||
# top10 = ','.join(top10_columns)
|
||||
# content.append(Graphs.draw_text(f'''{top10}'''))
|
||||
|
||||
# feature_df = feature_data_df[['ds','y']+top10_columns]
|
||||
# # 遍历X每一列,和yy画散点图 ,
|
||||
# for i, col in enumerate(feature_df.columns):
|
||||
# print(f'正在绘制第{i+1}个特征{col}与价格散点图...')
|
||||
# if col not in ['ds', 'y']:
|
||||
# fig, ax1 = plt.subplots(figsize=(10, 6))
|
||||
# # 在第一个坐标轴上绘制数据
|
||||
# ax1.plot(feature_df['ds'], feature_df['y'], 'b-')
|
||||
# ax1.set_xlabel('日期')
|
||||
# ax1.set_ylabel('y', color='b')
|
||||
# ax1.tick_params('y', colors='b')
|
||||
# # 在 ax1 上添加文本显示值,添加一定的偏移避免值与曲线重叠
|
||||
# for j in range(1,len(feature_df),2):
|
||||
# value = feature_df['y'].iloc[j]
|
||||
# date = feature_df['ds'].iloc[j]
|
||||
# offset = 1.001
|
||||
# ax1.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='b', fontsize=10)
|
||||
# # 创建第二个坐标轴
|
||||
# ax2 = ax1.twinx()
|
||||
# # 在第二个坐标轴上绘制数据
|
||||
# line2 = ax2.plot(feature_df['ds'], feature_df[col], 'r-')
|
||||
# ax2.set_ylabel(col, color='r')
|
||||
# ax2.tick_params('y', colors='r')
|
||||
# # 在 ax2 上添加文本显示值,添加一定的偏移避免值与曲线重叠
|
||||
# for j in range(0,len(feature_df),2):
|
||||
# value = feature_df[col].iloc[j]
|
||||
# date = feature_df['ds'].iloc[j]
|
||||
# offset = 1.001
|
||||
# ax2.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='r', fontsize=10)
|
||||
# # 添加标题
|
||||
# plt.title(col)
|
||||
# # 设置横坐标为日期格式并自动调整
|
||||
# locator = mdates.AutoDateLocator()
|
||||
# formatter = mdates.AutoDateFormatter(locator)
|
||||
# ax1.xaxis.set_major_locator(locator)
|
||||
# ax1.xaxis.set_major_formatter(formatter)
|
||||
# # 文件名特殊字符处理
|
||||
# col = col.replace('*', '-')
|
||||
# col = col.replace(':', '-')
|
||||
# plt.savefig(os.path.join(dataset, f'{col}与价格散点图.png'))
|
||||
# content.append(Graphs.draw_img(os.path.join(dataset, f'{col}与价格散点图.png')))
|
||||
# plt.close()
|
||||
|
||||
|
||||
# content.append(Graphs.draw_text(f'指标相关性分析--斯皮尔曼相关系数:'))
|
||||
# # 皮尔逊正相关 不相关 负相关 的表格
|
||||
# content.append(Graphs.draw_img(os.path.join(dataset,'斯皮尔曼相关性系数.png')))
|
||||
# content.append(Graphs.draw_text('斯皮尔曼相关系数(Spearmans rank correlation coefficient)是一种用于衡量两个变量之间的单调关系(不一定是线性关系)的统计指标。'))
|
||||
# content.append(Graphs.draw_text('它的计算基于变量的秩次(即变量值的排序位置)而非变量的原始值。'))
|
||||
# content.append(Graphs.draw_text('斯皮尔曼相关系数的取值范围在 -1 到 1 之间。'))
|
||||
# content.append(Graphs.draw_text('当系数为 1 时,表示两个变量之间存在完全正的单调关系;'))
|
||||
# content.append(Graphs.draw_text('''当前特征中正单调关系前十的有:'''))
|
||||
# top10_columns = correlation_df.sort_values(by='Spearman_Correlation',ascending=False).head(10)['Feature'].to_list()
|
||||
# top10 = ','.join(top10_columns)
|
||||
# content.append(Graphs.draw_text(f'''{top10}'''))
|
||||
|
||||
# feature_df = feature_data_df[['ds','y']+top10_columns]
|
||||
# # 遍历X每一列,和yy画散点图 ,
|
||||
# for i, col in enumerate(feature_df.columns):
|
||||
# print(f'正在绘制第{i+1}个特征{col}与价格散点图...')
|
||||
# if col not in ['ds', 'y']:
|
||||
# fig, ax1 = plt.subplots(figsize=(10, 6))
|
||||
# # 在第一个坐标轴上绘制数据
|
||||
# ax1.plot(feature_df['ds'], feature_df['y'], 'b-')
|
||||
# ax1.set_xlabel('日期')
|
||||
# ax1.set_ylabel('y', color='b')
|
||||
# ax1.tick_params('y', colors='b')
|
||||
# # 在 ax1 上添加文本显示值,添加一定的偏移避免值与曲线重叠
|
||||
# for j in range(1,len(feature_df),2):
|
||||
# value = feature_df['y'].iloc[j]
|
||||
# date = feature_df['ds'].iloc[j]
|
||||
# offset = 1.001
|
||||
# ax1.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='b', fontsize=10)
|
||||
# # 创建第二个坐标轴
|
||||
# ax2 = ax1.twinx()
|
||||
# # 在第二个坐标轴上绘制数据
|
||||
# line2 = ax2.plot(feature_df['ds'], feature_df[col], 'r-')
|
||||
# ax2.set_ylabel(col, color='r')
|
||||
# ax2.tick_params('y', colors='r')
|
||||
# # 在 ax2 上添加文本显示值,添加一定的偏移避免值与曲线重叠
|
||||
# for j in range(0,len(feature_df),2):
|
||||
# value = feature_df[col].iloc[j]
|
||||
# date = feature_df['ds'].iloc[j]
|
||||
# offset = 1.001
|
||||
# ax2.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='r', fontsize=10)
|
||||
# # 添加标题
|
||||
# plt.title(col)
|
||||
# # 设置横坐标为日期格式并自动调整
|
||||
# locator = mdates.AutoDateLocator()
|
||||
# formatter = mdates.AutoDateFormatter(locator)
|
||||
# ax1.xaxis.set_major_locator(locator)
|
||||
# ax1.xaxis.set_major_formatter(formatter)
|
||||
# # 文件名特殊字符处理
|
||||
# col = col.replace('*', '-')
|
||||
# col = col.replace(':', '-')
|
||||
# plt.savefig(os.path.join(dataset, f'{col}与价格散点图.png'))
|
||||
# content.append(Graphs.draw_img(os.path.join(dataset, f'{col}与价格散点图.png')))
|
||||
# plt.close()
|
||||
|
||||
# content.append(Graphs.draw_text('当系数为 -1 时,表示存在完全负的单调关系;'))
|
||||
# content.append(Graphs.draw_text('''当前特征中负单调关系前十的有:'''))
|
||||
# tail10_columns = correlation_df.sort_values(by='Spearman_Correlation',ascending=True).head(10)['Feature'].to_list()
|
||||
# top10 = ','.join(tail10_columns)
|
||||
# content.append(Graphs.draw_text(f'''{top10}'''))
|
||||
# # 获取特征的近一周值
|
||||
# feature_df = feature_data_df[['ds','y']+tail10_columns]
|
||||
# # 遍历X每一列,和yy画散点图 ,
|
||||
# for i, col in enumerate(feature_df.columns):
|
||||
# print(f'正在绘制第{i+1}个特征{col}与价格散点图...')
|
||||
# if col not in ['ds', 'y']:
|
||||
# fig, ax1 = plt.subplots(figsize=(10, 6))
|
||||
# # 在第一个坐标轴上绘制数据
|
||||
# ax1.plot(feature_df['ds'], feature_df['y'], 'b-')
|
||||
# ax1.set_xlabel('日期')
|
||||
# ax1.set_ylabel('y', color='b')
|
||||
# ax1.tick_params('y', colors='b')
|
||||
# # 在 ax1 上添加文本显示值,添加一定的偏移避免值与曲线重叠
|
||||
# for j in range(len(feature_df)):
|
||||
# if j%2 == 1:
|
||||
# value = feature_df['y'].iloc[j]
|
||||
# date = feature_df['ds'].iloc[j]
|
||||
# offset = 1.001
|
||||
# ax1.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='b', fontsize=10)
|
||||
# # 创建第二个坐标轴
|
||||
# ax2 = ax1.twinx()
|
||||
# # 在第二个坐标轴上绘制数据
|
||||
# line2 = ax2.plot(feature_df['ds'], feature_df[col], 'r-')
|
||||
# ax2.set_ylabel(col, color='r')
|
||||
# ax2.tick_params('y', colors='r')
|
||||
# # 在 ax2 上添加文本显示值,添加一定的偏移避免值与曲线重叠
|
||||
# for j in range(1,len(feature_df),2):
|
||||
# value = feature_df[col].iloc[j]
|
||||
# date = feature_df['ds'].iloc[j]
|
||||
# offset = 1.001
|
||||
# ax2.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='r', fontsize=10)
|
||||
# # 添加标题
|
||||
# plt.title(col)
|
||||
# # 设置横坐标为日期格式并自动调整
|
||||
# locator = mdates.AutoDateLocator()
|
||||
# formatter = mdates.AutoDateFormatter(locator)
|
||||
# ax1.xaxis.set_major_locator(locator)
|
||||
# ax1.xaxis.set_major_formatter(formatter)
|
||||
# # 文件名特殊字符处理
|
||||
# col = col.replace('*', '-')
|
||||
# col = col.replace(':', '-')
|
||||
# plt.savefig(os.path.join(dataset, f'{col}与价格散点图.png'))
|
||||
# content.append(Graphs.draw_img(os.path.join(dataset, f'{col}与价格散点图.png')))
|
||||
# plt.close()
|
||||
# content.append(Graphs.draw_text('当系数为 0 时,表示两个变量之间不存在单调关系。'))
|
||||
# content.append(Graphs.draw_text('与皮尔逊相关系数相比,斯皮尔曼相关系数对于数据中的异常值不敏感,更适用于处理非线性关系或存在极端值的数据。'))
|
||||
content.append(Graphs.draw_little_title('模型选择:'))
|
||||
content.append(Graphs.draw_text(f'预测使用了{num_models}个模型进行训练拟合,通过评估指标MAE从小到大排列,前5个模型的简介如下:'))
|
||||
|
||||
@ -1992,12 +1495,9 @@ def pp_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inputsi
|
||||
eval_df[col] = eval_df[col].round(3)
|
||||
# 筛选 fivemodels_list.tolist() 的行
|
||||
eval_df = eval_df[eval_df['模型(Model)'].isin(fivemodels_list)]
|
||||
# df转置
|
||||
eval_df = eval_df.T
|
||||
# df重置索引
|
||||
eval_df = eval_df.reset_index()
|
||||
eval_df = eval_df.T
|
||||
# # 添加表格
|
||||
data = eval_df.values.tolist()
|
||||
col_width = 500/len(eval_df.columns)
|
||||
content.append(Graphs.draw_table(col_width,*data))
|
||||
@ -2006,7 +1506,6 @@ def pp_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inputsi
|
||||
content.append(Graphs.draw_text('2. 平均绝对误差(MAE):平均绝对误差是衡量预测值与实际值之间误差的一种方法,取值越小,误差越小,预测效果越好。'))
|
||||
content.append(Graphs.draw_text('3. 平均平方误差(MSE):平均平方误差是衡量预测值与实际值之间误差的一种方法,取值越小,误差越小,预测效果越好。'))
|
||||
content.append(Graphs.draw_text('模型拟合:'))
|
||||
# 添加图片
|
||||
content.append(Graphs.draw_img(os.path.join(dataset,'预测值与真实值对比图.png')))
|
||||
|
||||
# 附1,特征列表
|
||||
@ -2019,14 +1518,11 @@ def pp_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inputsi
|
||||
for i in range(len(fuyi)):
|
||||
content.append(Graphs.draw_text(f'{i+1}、{fuyi[i]}'))
|
||||
|
||||
|
||||
|
||||
### 生成pdf文件
|
||||
doc = SimpleDocTemplate(os.path.join(dataset,reportname), pagesize=letter)
|
||||
# doc = SimpleDocTemplate(os.path.join(dataset,'reportname.pdf'), pagesize=letter)
|
||||
doc.build(content)
|
||||
# pdf 上传到数字化信息平台
|
||||
# 读取pdf并转为base64
|
||||
try:
|
||||
if is_update_report:
|
||||
with open(os.path.join(dataset,reportname), 'rb') as f:
|
||||
@ -2038,8 +1534,6 @@ def pp_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inputsi
|
||||
except TimeoutError as e:
|
||||
print(f"请求超时: {e}")
|
||||
|
||||
|
||||
|
||||
def pp_export_pdf_v1(num_indicators=475,num_models=21, num_dayindicator=202,inputsize=5,dataset='dataset',time = '2024-07-30',reportname='report.pdf'):
|
||||
global y
|
||||
# 创建内容对应的空列表
|
||||
@ -2376,9 +1870,6 @@ def pp_export_pdf_v1(num_indicators=475,num_models=21, num_dayindicator=202,inpu
|
||||
except TimeoutError as e:
|
||||
print(f"请求超时: {e}")
|
||||
|
||||
|
||||
|
||||
|
||||
def tansuanli_export_pdf(num_indicators=475,num_models=22, num_dayindicator=202,inputsize=5,dataset='dataset',y='电碳价格',end_time='2024-07-30',reportname='tansuanli.pdf'):
|
||||
# 创建内容对应的空列表
|
||||
content = list()
|
||||
|
Loading…
Reference in New Issue
Block a user