聚烯烃PP期货预测
This commit is contained in:
		
							parent
							
								
									97ef8b63a3
								
							
						
					
					
						commit
						f3971a94ec
					
				| @ -397,6 +397,9 @@ get_waring_data_value_list_data = { | |||||||
| # 八大维度数据项编码 | # 八大维度数据项编码 | ||||||
| bdwd_items = { | bdwd_items = { | ||||||
|     'ciri': 'jxtppbdwdcr', |     'ciri': 'jxtppbdwdcr', | ||||||
|  |     'cierri': 'jxtppbdwdcer', | ||||||
|  |     'cisanri': 'jxtppbdwdcsanr', | ||||||
|  |     'cisiri': 'jxtppbdwdcsir', | ||||||
|     'benzhou': 'jxtppbdwdbz', |     'benzhou': 'jxtppbdwdbz', | ||||||
|     'cizhou': 'jxtppbdwdcz', |     'cizhou': 'jxtppbdwdcz', | ||||||
|     'gezhou': 'jxtppbdwdgz', |     'gezhou': 'jxtppbdwdgz', | ||||||
|  | |||||||
| @ -86,11 +86,14 @@ bdwdname = [ | |||||||
|     '次周', |     '次周', | ||||||
|     '隔周', |     '隔周', | ||||||
| ] | ] | ||||||
|  | 
 | ||||||
| # 数据库预测结果表八大维度列名 | # 数据库预测结果表八大维度列名 | ||||||
| price_columns = [ | price_columns = [ | ||||||
|     'day_price', 'week_price', 'second_week_price', 'next_week_price', |     'day_price', 'week_price', 'second_week_price', 'next_week_price', | ||||||
|     'next_month_price', 'next_february_price', 'next_march_price', 'next_april_price' |     'next_month_price', 'next_february_price', 'next_march_price', 'next_april_price' | ||||||
| ] | ] | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
| modelsindex = [{ | modelsindex = [{ | ||||||
|     "NHITS": "SELF0000231", |     "NHITS": "SELF0000231", | ||||||
|     "Informer": "SELF0000232", |     "Informer": "SELF0000232", | ||||||
|  | |||||||
| @ -2,7 +2,7 @@ | |||||||
| 
 | 
 | ||||||
| from lib.dataread import * | from lib.dataread import * | ||||||
| from config_juxiting import * | from config_juxiting import * | ||||||
| from lib.tools import SendMail, exception_logger, convert_df_to_pydantic_pp, exception_logger, get_modelsname, plot_pp_predict_result | from lib.tools import SendMail, exception_logger, convert_df_to_pydantic_pp, exception_logger, find_best_models, get_modelsname, plot_pp_predict_result | ||||||
| from models.nerulforcastmodels import ex_Model_Juxiting, model_losss_juxiting, pp_export_pdf | from models.nerulforcastmodels import ex_Model_Juxiting, model_losss_juxiting, pp_export_pdf | ||||||
| import datetime | import datetime | ||||||
| import torch | import torch | ||||||
| @ -103,49 +103,53 @@ global_config.update({ | |||||||
| 
 | 
 | ||||||
| def push_market_value(): | def push_market_value(): | ||||||
|     config.logger.info('发送预测结果到市场信息平台') |     config.logger.info('发送预测结果到市场信息平台') | ||||||
|  | 
 | ||||||
|  |     current_end_time = global_config['end_time'] | ||||||
|  |     previous_trading_day = (pd.Timestamp(current_end_time) -  | ||||||
|  |                            pd.tseries.offsets.BusinessDay(1)).strftime('%Y-%m-%d') | ||||||
|  | 
 | ||||||
|     # 读取预测数据和模型评估数据 |     # 读取预测数据和模型评估数据 | ||||||
|     predict_file_path = os.path.join(config.dataset, 'predict.csv') |     best_bdwd_price = find_best_models( | ||||||
|     model_eval_file_path = os.path.join(config.dataset, 'model_evaluation.csv') |         date=previous_trading_day, global_config=global_config) | ||||||
|     try: |      | ||||||
|         predictdata_df = pd.read_csv(predict_file_path) |      # 获取本周最佳模型的五日预测价格 | ||||||
|         top_models_df = pd.read_csv(model_eval_file_path) |     five_days_predict_price = pd.read_csv('juxitingdataset/predict.csv') | ||||||
|     except FileNotFoundError as e: |     week_price_modelname = best_bdwd_price['week_price']['model_name'] | ||||||
|         config.logger.error(f"文件未找到: {e}") |     five_days_predict_price = five_days_predict_price[['ds',week_price_modelname]] | ||||||
|         return |     five_days_predict_price['ds'] = pd.to_datetime(five_days_predict_price['ds']) | ||||||
| 
 |     five_days_predict_price.rename(columns={week_price_modelname:'predictresult'},inplace=True) | ||||||
|     predictdata = predictdata_df.copy() |     # 设置索引 次日 次二日 次三日 次四日  次五日 | ||||||
| 
 |     index_labels = ["次日", "次二日", "次三日", "次四日", "次五日"] | ||||||
|     # 取模型前十 |     five_days_predict_price.index = index_labels  | ||||||
|     top_models = top_models_df['模型(Model)'].head(10).tolist() |     global_config['logger'].info(f"best_bdwd_price: {best_bdwd_price}") | ||||||
|     # 去掉FDBformer |  | ||||||
|     if 'FEDformer' in top_models: |  | ||||||
|         top_models.remove('FEDformer') |  | ||||||
| 
 |  | ||||||
|     # 计算前十模型的均值 |  | ||||||
|     predictdata_df['top_models_mean'] = predictdata_df[top_models].mean(axis=1) |  | ||||||
| 
 |  | ||||||
|     # 打印日期和前十模型均值 |  | ||||||
|     print(predictdata_df[['ds', 'top_models_mean']]) |  | ||||||
| 
 |  | ||||||
|     # 准备要推送的数据 |  | ||||||
|     first_mean = predictdata_df['top_models_mean'].iloc[0] |  | ||||||
|     last_mean = predictdata_df['top_models_mean'].iloc[-1] |  | ||||||
|     # 保留两位小数 |  | ||||||
|     first_mean = round(first_mean, 2) |  | ||||||
|     last_mean = round(last_mean, 2) |  | ||||||
| 
 | 
 | ||||||
|     predictdata = [ |     predictdata = [ | ||||||
|         { |         { | ||||||
|             "dataItemNo": global_config['bdwd_items']['ciri'], |             "dataItemNo": global_config['bdwd_items']['ciri'], | ||||||
|             "dataDate": global_config['end_time'].replace('-', ''), |             "dataDate": global_config['end_time'].replace('-', ''), | ||||||
|             "dataStatus": "add", |             "dataStatus": "add", | ||||||
|             "dataValue": first_mean |             "dataValue": five_days_predict_price.loc['次日','predictresult'].round(2) | ||||||
|  |         },{ | ||||||
|  |             "dataItemNo": global_config['bdwd_items']['cierri'], | ||||||
|  |             "dataDate": global_config['end_time'].replace('-', ''), | ||||||
|  |             "dataStatus": "add", | ||||||
|  |             "dataValue": five_days_predict_price.loc['次二日','predictresult'].round(2) | ||||||
|  |         },{ | ||||||
|  |             "dataItemNo": global_config['bdwd_items']['cisanri'], | ||||||
|  |             "dataDate": global_config['end_time'].replace('-', ''), | ||||||
|  |             "dataStatus": "add", | ||||||
|  |             "dataValue": five_days_predict_price.loc['次三日','predictresult'].round(2) | ||||||
|  |         },{ | ||||||
|  |             "dataItemNo": global_config['bdwd_items']['cisiri'], | ||||||
|  |             "dataDate": global_config['end_time'].replace('-', ''), | ||||||
|  |             "dataStatus": "add", | ||||||
|  |             "dataValue": five_days_predict_price.loc['次四日','predictresult'].round(2) | ||||||
|         }, |         }, | ||||||
|         { |         { | ||||||
|             "dataItemNo": global_config['bdwd_items']['benzhou'], |             "dataItemNo": global_config['bdwd_items']['benzhou'], | ||||||
|             "dataDate": global_config['end_time'].replace('-', ''), |             "dataDate": global_config['end_time'].replace('-', ''), | ||||||
|             "dataStatus": "add", |             "dataStatus": "add", | ||||||
|             "dataValue": last_mean |             "dataValue": five_days_predict_price.loc['次五日','predictresult'].round(2) | ||||||
|         } |         } | ||||||
|     ] |     ] | ||||||
| 
 | 
 | ||||||
| @ -553,7 +557,7 @@ if __name__ == '__main__': | |||||||
|     #     except Exception as e: |     #     except Exception as e: | ||||||
|     #         logger.info(f'预测失败:{e}') |     #         logger.info(f'预测失败:{e}') | ||||||
|     #         continue |     #         continue | ||||||
| 
 |     global_config['end_time'] = '2025-08-04' | ||||||
|     predict_main() |     predict_main() | ||||||
| 
 | 
 | ||||||
|     # push_market_value() |     # push_market_value() | ||||||
|  | |||||||
| @ -2,7 +2,7 @@ | |||||||
| 
 | 
 | ||||||
| from lib.dataread import * | from lib.dataread import * | ||||||
| from config_juxiting_yuedu import * | from config_juxiting_yuedu import * | ||||||
| from lib.tools import SendMail, convert_df_to_pydantic_pp, exception_logger, get_modelsname | from lib.tools import SendMail, convert_df_to_pydantic_pp, exception_logger, find_best_models, get_modelsname | ||||||
| from models.nerulforcastmodels import ex_Model, model_losss_juxiting, pp_bdwd_png, pp_export_pdf | from models.nerulforcastmodels import ex_Model, model_losss_juxiting, pp_bdwd_png, pp_export_pdf | ||||||
| import datetime | import datetime | ||||||
| import torch | import torch | ||||||
| @ -93,35 +93,28 @@ global_config.update({ | |||||||
| 
 | 
 | ||||||
| def push_market_value(): | def push_market_value(): | ||||||
|     logger.info('发送预测结果到市场信息平台') |     logger.info('发送预测结果到市场信息平台') | ||||||
|  |     current_end_time = global_config['end_time'] | ||||||
|  |     previous_trading_day = (pd.Timestamp(current_end_time) -  | ||||||
|  |                            pd.tseries.offsets.BusinessDay(1)).strftime('%Y-%m-%d') | ||||||
|  | 
 | ||||||
|     # 读取预测数据和模型评估数据 |     # 读取预测数据和模型评估数据 | ||||||
|     predict_file_path = os.path.join(config.dataset, 'predict.csv') |     best_bdwd_price = find_best_models( | ||||||
|     model_eval_file_path = os.path.join(config.dataset, 'model_evaluation.csv') |         date=previous_trading_day, global_config=global_config) | ||||||
|     try: |      | ||||||
|         predictdata_df = pd.read_csv(predict_file_path) |      # 获取本月最佳模型的预测价格 | ||||||
|         top_models_df = pd.read_csv(model_eval_file_path) |     four_month_predict_price = pd.read_csv(os.path.join(global_config['dataset'], 'predict.csv')) | ||||||
|     except FileNotFoundError as e: |     four_month_predict_price['ds'] = pd.to_datetime(four_month_predict_price['ds']) | ||||||
|         logger.error(f"文件未找到: {e}") |     # 设置索引 次月 次二月 次三月 次四月 | ||||||
|         return |     index_labels = ["次月", "次二月", "次三月", "次四月"] | ||||||
| 
 |     four_month_predict_price.index = index_labels  | ||||||
|     predictdata = predictdata_df.copy() |     global_config['logger'].info(f"best_bdwd_price: {best_bdwd_price}") | ||||||
| 
 |  | ||||||
|     # 取模型前十 |  | ||||||
|     top_models = top_models_df['模型(Model)'].head(10).tolist() |  | ||||||
|     # 去掉FDBformer |  | ||||||
|     if 'FEDformer' in top_models: |  | ||||||
|         top_models.remove('FEDformer') |  | ||||||
|     # 计算前十模型的均值 |  | ||||||
|     predictdata_df['top_models_mean'] = predictdata_df[top_models].mean(axis=1) |  | ||||||
| 
 |  | ||||||
|     # 打印日期和前十模型均值 |  | ||||||
|     print(predictdata_df[['ds', 'top_models_mean']]) |  | ||||||
| 
 | 
 | ||||||
|     # 准备要推送的数据 |     # 准备要推送的数据 | ||||||
|     ciyue_mean = predictdata_df['top_models_mean'].iloc[0] |     ciyue_mean = four_month_predict_price[best_bdwd_price['next_month_price']['model_name']].iloc[0] | ||||||
|     cieryue_mean = predictdata_df['top_models_mean'].iloc[1] |     cieryue_mean = four_month_predict_price[best_bdwd_price['next_february_price']['model_name']].iloc[1] | ||||||
|     cisanyue_mean = predictdata_df['top_models_mean'].iloc[2] |     cisanyue_mean = four_month_predict_price[best_bdwd_price['next_march_price']['model_name']].iloc[2] | ||||||
|     cisieryue_mean = predictdata_df['top_models_mean'].iloc[3] |     cisieryue_mean = four_month_predict_price[best_bdwd_price['next_april_price']['model_name']].iloc[3] | ||||||
|     # 保留两位小数 |     # # 保留两位小数 | ||||||
|     ciyue_mean = round(ciyue_mean, 2) |     ciyue_mean = round(ciyue_mean, 2) | ||||||
|     cieryue_mean = round(cieryue_mean, 2) |     cieryue_mean = round(cieryue_mean, 2) | ||||||
|     cisanyue_mean = round(cisanyue_mean, 2) |     cisanyue_mean = round(cisanyue_mean, 2) | ||||||
| @ -292,211 +285,211 @@ def predict_main(): | |||||||
|     返回: |     返回: | ||||||
|         None |         None | ||||||
|     """ |     """ | ||||||
|     end_time = global_config['end_time'] |     # end_time = global_config['end_time'] | ||||||
|     signature = BinanceAPI(APPID, SECRET) |     # signature = BinanceAPI(APPID, SECRET) | ||||||
|     etadata = EtaReader(signature=signature, |     # etadata = EtaReader(signature=signature, | ||||||
|                         classifylisturl=global_config['classifylisturl'], |     #                     classifylisturl=global_config['classifylisturl'], | ||||||
|                         classifyidlisturl=global_config['classifyidlisturl'], |     #                     classifyidlisturl=global_config['classifyidlisturl'], | ||||||
|                         edbcodedataurl=global_config['edbcodedataurl'], |     #                     edbcodedataurl=global_config['edbcodedataurl'], | ||||||
|                         edbcodelist=global_config['edbcodelist'], |     #                     edbcodelist=global_config['edbcodelist'], | ||||||
|                         edbdatapushurl=global_config['edbdatapushurl'], |     #                     edbdatapushurl=global_config['edbdatapushurl'], | ||||||
|                         edbdeleteurl=global_config['edbdeleteurl'], |     #                     edbdeleteurl=global_config['edbdeleteurl'], | ||||||
|                         edbbusinessurl=global_config['edbbusinessurl'], |     #                     edbbusinessurl=global_config['edbbusinessurl'], | ||||||
|                         classifyId=global_config['ClassifyId'], |     #                     classifyId=global_config['ClassifyId'], | ||||||
|                         ) |     #                     ) | ||||||
|     # 获取数据 |     # # 获取数据 | ||||||
|     if is_eta: |     # if is_eta: | ||||||
|         logger.info('从eta获取数据...') |     #     logger.info('从eta获取数据...') | ||||||
| 
 | 
 | ||||||
|         df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_pp_data( |     #     df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_pp_data( | ||||||
|             data_set=data_set, dataset=dataset)  # 原始数据,未处理 |     #         data_set=data_set, dataset=dataset)  # 原始数据,未处理 | ||||||
| 
 | 
 | ||||||
|         if is_market: |     #     if is_market: | ||||||
|             logger.info('从市场信息平台获取数据...') |     #         logger.info('从市场信息平台获取数据...') | ||||||
|             try: |     #         try: | ||||||
|                 # 如果是测试环境,最高价最低价取excel文档 |     #             # 如果是测试环境,最高价最低价取excel文档 | ||||||
|                 if server_host == '192.168.100.53': |     #             if server_host == '192.168.100.53': | ||||||
|                     logger.info('从excel文档获取最高价最低价') |     #                 logger.info('从excel文档获取最高价最低价') | ||||||
|                     df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju) |     #                 df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju) | ||||||
|                 else: |     #             else: | ||||||
|                     logger.info('从市场信息平台获取数据') |     #                 logger.info('从市场信息平台获取数据') | ||||||
|                     df_zhibiaoshuju = get_market_data( |     #                 df_zhibiaoshuju = get_market_data( | ||||||
|                         end_time, df_zhibiaoshuju) |     #                     end_time, df_zhibiaoshuju) | ||||||
| 
 | 
 | ||||||
|             except: |     #         except: | ||||||
|                 logger.info('最高最低价拼接失败') |     #             logger.info('最高最低价拼接失败') | ||||||
| 
 | 
 | ||||||
|         # 保存到xlsx文件的sheet表 |     #     # 保存到xlsx文件的sheet表 | ||||||
|         with pd.ExcelWriter(os.path.join(dataset, data_set)) as file: |     #     with pd.ExcelWriter(os.path.join(dataset, data_set)) as file: | ||||||
|             df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False) |     #         df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False) | ||||||
|             df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False) |     #         df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False) | ||||||
| 
 | 
 | ||||||
|         # 数据处理 |     #     # 数据处理 | ||||||
|         df = datachuli_juxiting(df_zhibiaoshuju, df_zhibiaoliebiao, y=global_config['y'], dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture, |     #     df = datachuli_juxiting(df_zhibiaoshuju, df_zhibiaoliebiao, y=global_config['y'], dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture, | ||||||
|                                 end_time=end_time) |     #                             end_time=end_time) | ||||||
| 
 | 
 | ||||||
|     else: |     # else: | ||||||
|         # 读取数据 |     #     # 读取数据 | ||||||
|         logger.info('读取本地数据:' + os.path.join(dataset, data_set)) |     #     logger.info('读取本地数据:' + os.path.join(dataset, data_set)) | ||||||
|         df, df_zhibiaoliebiao = getdata_zhoudu_juxiting(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj, |     #     df, df_zhibiaoliebiao = getdata_zhoudu_juxiting(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj, | ||||||
|                                                         is_timefurture=is_timefurture, end_time=end_time)  # 原始数据,未处理 |     #                                                     is_timefurture=is_timefurture, end_time=end_time)  # 原始数据,未处理 | ||||||
| 
 | 
 | ||||||
|     # 更改预测列名称 |     # # 更改预测列名称 | ||||||
|     df.rename(columns={y: 'y'}, inplace=True) |     # df.rename(columns={y: 'y'}, inplace=True) | ||||||
| 
 | 
 | ||||||
|     if is_edbnamelist: |     # if is_edbnamelist: | ||||||
|         df = df[edbnamelist] |     #     df = df[edbnamelist] | ||||||
|     df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False) |     # df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False) | ||||||
|     # 保存最新日期的y值到数据库 |     # # 保存最新日期的y值到数据库 | ||||||
|     # 取第一行数据存储到数据库中 |     # # 取第一行数据存储到数据库中 | ||||||
|     first_row = df[['ds', 'y']].tail(1) |     # first_row = df[['ds', 'y']].tail(1) | ||||||
|     # 判断y的类型是否为float |     # # 判断y的类型是否为float | ||||||
|     if not isinstance(first_row['y'].values[0], float): |     # if not isinstance(first_row['y'].values[0], float): | ||||||
|         logger.info(f'{end_time}预测目标数据为空,跳过') |     #     logger.info(f'{end_time}预测目标数据为空,跳过') | ||||||
|         return None |     #     return None | ||||||
| 
 | 
 | ||||||
|     # 将最新真实值保存到数据库 |     # # 将最新真实值保存到数据库 | ||||||
|     if not sqlitedb.check_table_exists('trueandpredict'): |     # if not sqlitedb.check_table_exists('trueandpredict'): | ||||||
|         first_row.to_sql('trueandpredict', sqlitedb.connection, index=False) |     #     first_row.to_sql('trueandpredict', sqlitedb.connection, index=False) | ||||||
|     else: |     # else: | ||||||
|         for row in first_row.itertuples(index=False): |     #     for row in first_row.itertuples(index=False): | ||||||
|             row_dict = row._asdict() |     #         row_dict = row._asdict() | ||||||
|             config.logger.info(f'要保存的真实值:{row_dict}') |     #         config.logger.info(f'要保存的真实值:{row_dict}') | ||||||
|             # 判断ds是否为字符串类型,如果不是则转换为字符串类型 |     #         # 判断ds是否为字符串类型,如果不是则转换为字符串类型 | ||||||
|             if isinstance(row_dict['ds'], (pd.Timestamp, datetime.datetime)): |     #         if isinstance(row_dict['ds'], (pd.Timestamp, datetime.datetime)): | ||||||
|                 row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d') |     #             row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d') | ||||||
|             elif not isinstance(row_dict['ds'], str): |     #         elif not isinstance(row_dict['ds'], str): | ||||||
|                 try: |     #             try: | ||||||
|                     row_dict['ds'] = pd.to_datetime( |     #                 row_dict['ds'] = pd.to_datetime( | ||||||
|                         row_dict['ds']).strftime('%Y-%m-%d') |     #                     row_dict['ds']).strftime('%Y-%m-%d') | ||||||
|                 except: |     #             except: | ||||||
|                     logger.warning(f"无法解析的时间格式: {row_dict['ds']}") |     #                 logger.warning(f"无法解析的时间格式: {row_dict['ds']}") | ||||||
|             # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d') |     #         # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d') | ||||||
|             # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S') |     #         # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S') | ||||||
|             check_query = sqlitedb.select_data( |     #         check_query = sqlitedb.select_data( | ||||||
|                 'trueandpredict', where_condition=f"ds = '{row.ds}'") |     #             'trueandpredict', where_condition=f"ds = '{row.ds}'") | ||||||
|             if len(check_query) > 0: |     #         if len(check_query) > 0: | ||||||
|                 set_clause = ", ".join( |     #             set_clause = ", ".join( | ||||||
|                     [f"{key} = '{value}'" for key, value in row_dict.items()]) |     #                 [f"{key} = '{value}'" for key, value in row_dict.items()]) | ||||||
|                 sqlitedb.update_data( |     #             sqlitedb.update_data( | ||||||
|                     'trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'") |     #                 'trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'") | ||||||
|                 continue |     #             continue | ||||||
|             sqlitedb.insert_data('trueandpredict', tuple( |     #         sqlitedb.insert_data('trueandpredict', tuple( | ||||||
|                 row_dict.values()), columns=row_dict.keys()) |     #             row_dict.values()), columns=row_dict.keys()) | ||||||
| 
 | 
 | ||||||
|     # 更新accuracy表的y值 |     # # 更新accuracy表的y值 | ||||||
|     if not sqlitedb.check_table_exists('accuracy'): |     # if not sqlitedb.check_table_exists('accuracy'): | ||||||
|         pass |     #     pass | ||||||
|     else: |     # else: | ||||||
|         update_y = sqlitedb.select_data( |     #     update_y = sqlitedb.select_data( | ||||||
|             'accuracy', where_condition="y is null") |     #         'accuracy', where_condition="y is null") | ||||||
|         if len(update_y) > 0: |     #     if len(update_y) > 0: | ||||||
|             logger.info('更新accuracy表的y值') |     #         logger.info('更新accuracy表的y值') | ||||||
|             # 找到update_y 中ds且df中的y的行 |     #         # 找到update_y 中ds且df中的y的行 | ||||||
|             update_y = update_y[update_y['ds'] <= end_time] |     #         update_y = update_y[update_y['ds'] <= end_time] | ||||||
|             logger.info(f'要更新y的信息:{update_y}') |     #         logger.info(f'要更新y的信息:{update_y}') | ||||||
|             # try: |     #         # try: | ||||||
|             for row in update_y.itertuples(index=False): |     #         for row in update_y.itertuples(index=False): | ||||||
|                 try: |     #             try: | ||||||
|                     row_dict = row._asdict() |     #                 row_dict = row._asdict() | ||||||
|                     yy = df[df['ds'] == row_dict['ds']]['y'].values[0] |     #                 yy = df[df['ds'] == row_dict['ds']]['y'].values[0] | ||||||
|                     LOW = df[df['ds'] == row_dict['ds']]['Brentzdj'].values[0] |     #                 LOW = df[df['ds'] == row_dict['ds']]['Brentzdj'].values[0] | ||||||
|                     HIGH = df[df['ds'] == row_dict['ds']]['Brentzgj'].values[0] |     #                 HIGH = df[df['ds'] == row_dict['ds']]['Brentzgj'].values[0] | ||||||
|                     sqlitedb.update_data( |     #                 sqlitedb.update_data( | ||||||
|                         'accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'") |     #                     'accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'") | ||||||
|                 except: |     #             except: | ||||||
|                     logger.info(f'更新accuracy表的y值失败:{row_dict}') |     #                 logger.info(f'更新accuracy表的y值失败:{row_dict}') | ||||||
|             # except Exception as e: |     #         # except Exception as e: | ||||||
|             #     logger.info(f'更新accuracy表的y值失败:{e}') |     #         #     logger.info(f'更新accuracy表的y值失败:{e}') | ||||||
| 
 | 
 | ||||||
|     # 判断当前日期是不是周一 |     # # 判断当前日期是不是周一 | ||||||
|     is_weekday = datetime.datetime.now().weekday() == 0 |     # is_weekday = datetime.datetime.now().weekday() == 0 | ||||||
|     if is_weekday: |     # if is_weekday: | ||||||
|         logger.info('今天是周一,更新预测模型') |     #     logger.info('今天是周一,更新预测模型') | ||||||
|         # 计算最近60天预测残差最低的模型名称 |     #     # 计算最近60天预测残差最低的模型名称 | ||||||
|         model_results = sqlitedb.select_data( |     #     model_results = sqlitedb.select_data( | ||||||
|             'trueandpredict', order_by="ds DESC", limit="60") |     #         'trueandpredict', order_by="ds DESC", limit="60") | ||||||
|         # 删除空值率为90%以上的列 |     #     # 删除空值率为90%以上的列 | ||||||
|         if len(model_results) > 10: |     #     if len(model_results) > 10: | ||||||
|             model_results = model_results.dropna( |     #         model_results = model_results.dropna( | ||||||
|                 thresh=len(model_results)*0.1, axis=1) |     #             thresh=len(model_results)*0.1, axis=1) | ||||||
|         # 删除空行 |     #     # 删除空行 | ||||||
|         model_results = model_results.dropna() |     #     model_results = model_results.dropna() | ||||||
|         modelnames = model_results.columns.to_list()[2:-1] |     #     modelnames = model_results.columns.to_list()[2:-1] | ||||||
|         for col in model_results[modelnames].select_dtypes(include=['object']).columns: |     #     for col in model_results[modelnames].select_dtypes(include=['object']).columns: | ||||||
|             model_results[col] = model_results[col].astype(np.float32) |     #         model_results[col] = model_results[col].astype(np.float32) | ||||||
|         # 计算每个预测值与真实值之间的偏差率 |     #     # 计算每个预测值与真实值之间的偏差率 | ||||||
|         for model in modelnames: |     #     for model in modelnames: | ||||||
|             model_results[f'{model}_abs_error_rate'] = abs( |     #         model_results[f'{model}_abs_error_rate'] = abs( | ||||||
|                 model_results['y'] - model_results[model]) / model_results['y'] |     #             model_results['y'] - model_results[model]) / model_results['y'] | ||||||
|         # 获取每行对应的最小偏差率值 |     #     # 获取每行对应的最小偏差率值 | ||||||
|         min_abs_error_rate_values = model_results.apply( |     #     min_abs_error_rate_values = model_results.apply( | ||||||
|             lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1) |     #         lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1) | ||||||
|         # 获取每行对应的最小偏差率值对应的列名 |     #     # 获取每行对应的最小偏差率值对应的列名 | ||||||
|         min_abs_error_rate_column_name = model_results.apply( |     #     min_abs_error_rate_column_name = model_results.apply( | ||||||
|             lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1) |     #         lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1) | ||||||
|         # 将列名索引转换为列名 |     #     # 将列名索引转换为列名 | ||||||
|         min_abs_error_rate_column_name = min_abs_error_rate_column_name.map( |     #     min_abs_error_rate_column_name = min_abs_error_rate_column_name.map( | ||||||
|             lambda x: x.split('_')[0]) |     #         lambda x: x.split('_')[0]) | ||||||
|         # 取出现次数最多的模型名称 |     #     # 取出现次数最多的模型名称 | ||||||
|         most_common_model = min_abs_error_rate_column_name.value_counts().idxmax() |     #     most_common_model = min_abs_error_rate_column_name.value_counts().idxmax() | ||||||
|         logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}") |     #     logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}") | ||||||
|         # 保存结果到数据库 |     #     # 保存结果到数据库 | ||||||
|         if not sqlitedb.check_table_exists('most_model'): |     #     if not sqlitedb.check_table_exists('most_model'): | ||||||
|             sqlitedb.create_table( |     #         sqlitedb.create_table( | ||||||
|                 'most_model', columns="ds datetime, most_common_model TEXT") |     #             'most_model', columns="ds datetime, most_common_model TEXT") | ||||||
|         sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime( |     #     sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime( | ||||||
|             '%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',)) |     #         '%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',)) | ||||||
| 
 | 
 | ||||||
|     if is_corr: |     # if is_corr: | ||||||
|         df = corr_feature(df=df) |     #     df = corr_feature(df=df) | ||||||
| 
 | 
 | ||||||
|     df1 = df.copy()  # 备份一下,后面特征筛选完之后加入ds y 列用 |     # df1 = df.copy()  # 备份一下,后面特征筛选完之后加入ds y 列用 | ||||||
|     logger.info(f"开始训练模型...") |     # logger.info(f"开始训练模型...") | ||||||
|     row, col = df.shape |     # row, col = df.shape | ||||||
| 
 | 
 | ||||||
|     now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') |     # now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') | ||||||
|     ex_Model(df, |     # ex_Model(df, | ||||||
|              horizon=global_config['horizon'], |     #          horizon=global_config['horizon'], | ||||||
|              input_size=global_config['input_size'], |     #          input_size=global_config['input_size'], | ||||||
|              train_steps=global_config['train_steps'], |     #          train_steps=global_config['train_steps'], | ||||||
|              val_check_steps=global_config['val_check_steps'], |     #          val_check_steps=global_config['val_check_steps'], | ||||||
|              early_stop_patience_steps=global_config['early_stop_patience_steps'], |     #          early_stop_patience_steps=global_config['early_stop_patience_steps'], | ||||||
|              is_debug=global_config['is_debug'], |     #          is_debug=global_config['is_debug'], | ||||||
|              dataset=global_config['dataset'], |     #          dataset=global_config['dataset'], | ||||||
|              is_train=global_config['is_train'], |     #          is_train=global_config['is_train'], | ||||||
|              is_fivemodels=global_config['is_fivemodels'], |     #          is_fivemodels=global_config['is_fivemodels'], | ||||||
|              val_size=global_config['val_size'], |     #          val_size=global_config['val_size'], | ||||||
|              test_size=global_config['test_size'], |     #          test_size=global_config['test_size'], | ||||||
|              settings=global_config['settings'], |     #          settings=global_config['settings'], | ||||||
|              now=now, |     #          now=now, | ||||||
|              etadata=etadata, |     #          etadata=etadata, | ||||||
|              modelsindex=global_config['modelsindex'], |     #          modelsindex=global_config['modelsindex'], | ||||||
|              data=data, |     #          data=data, | ||||||
|              is_eta=global_config['is_eta'], |     #          is_eta=global_config['is_eta'], | ||||||
|              end_time=global_config['end_time'], |     #          end_time=global_config['end_time'], | ||||||
|              ) |     #          ) | ||||||
| 
 | 
 | ||||||
|     logger.info('模型训练完成') |     # logger.info('模型训练完成') | ||||||
| 
 | 
 | ||||||
|     logger.info('训练数据绘图ing') |     # logger.info('训练数据绘图ing') | ||||||
|     model_results3 = model_losss_juxiting( |     # model_results3 = model_losss_juxiting( | ||||||
|         sqlitedb, end_time=global_config['end_time'], is_fivemodels=global_config['is_fivemodels']) |     #     sqlitedb, end_time=global_config['end_time'], is_fivemodels=global_config['is_fivemodels']) | ||||||
|     logger.info('训练数据绘图end') |     # logger.info('训练数据绘图end') | ||||||
| 
 | 
 | ||||||
|     push_market_value() |     # push_market_value() | ||||||
| 
 | 
 | ||||||
|     sql_inset_predict(global_config) |     # sql_inset_predict(global_config) | ||||||
| 
 | 
 | ||||||
|     # 模型报告 |     # # 模型报告 | ||||||
|     logger.info('制作报告ing') |     # logger.info('制作报告ing') | ||||||
|     title = f'{settings}--{end_time}-预测报告'  # 报告标题 |     # title = f'{settings}--{end_time}-预测报告'  # 报告标题 | ||||||
|     reportname = f'聚烯烃PP大模型月度预测--{end_time}.pdf'  # 报告文件名 |     # reportname = f'聚烯烃PP大模型月度预测--{end_time}.pdf'  # 报告文件名 | ||||||
|     reportname = reportname.replace(':', '-')  # 替换冒号 |     # reportname = reportname.replace(':', '-')  # 替换冒号 | ||||||
|     pp_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time, |     # pp_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time, | ||||||
|                   reportname=reportname, sqlitedb=sqlitedb), |     #               reportname=reportname, sqlitedb=sqlitedb), | ||||||
| 
 | 
 | ||||||
|     logger.info('制作报告end') |     # logger.info('制作报告end') | ||||||
| 
 | 
 | ||||||
|     # 图片报告 |     # 图片报告 | ||||||
|     logger.info('图片报告ing') |     logger.info('图片报告ing') | ||||||
| @ -537,7 +530,8 @@ if __name__ == '__main__': | |||||||
|     #         logger.info(f'预测失败:{e}') |     #         logger.info(f'预测失败:{e}') | ||||||
|     #         continue |     #         continue | ||||||
| 
 | 
 | ||||||
|     predict_main() |     predict_main()  | ||||||
|  |     # push_market_value() | ||||||
| 
 | 
 | ||||||
|     #  图片报告 |     #  图片报告 | ||||||
|     # global_config['end_time'] = '2025-07-31' |     # global_config['end_time'] = '2025-07-31' | ||||||
|  | |||||||
| @ -2,8 +2,8 @@ | |||||||
| 
 | 
 | ||||||
| from lib.dataread import * | from lib.dataread import * | ||||||
| from config_juxiting_zhoudu import * | from config_juxiting_zhoudu import * | ||||||
| from lib.tools import SendMail, exception_logger, convert_df_to_pydantic_pp, exception_logger, get_modelsname | from lib.tools import SendMail, exception_logger, convert_df_to_pydantic_pp, exception_logger, find_best_models, get_modelsname | ||||||
| from models.nerulforcastmodels import ex_Model_Juxiting, model_losss_juxiting, pp_bdwd_png, pp_export_pdf | from models.nerulforcastmodels import ex_Model_Juxiting, model_losss_juxiting, pp_export_pdf | ||||||
| import datetime | import datetime | ||||||
| import torch | import torch | ||||||
| torch.set_float32_matmul_precision("high") | torch.set_float32_matmul_precision("high") | ||||||
| @ -23,7 +23,6 @@ global_config.update({ | |||||||
|     'is_update_report': is_update_report, |     'is_update_report': is_update_report, | ||||||
|     'settings': settings, |     'settings': settings, | ||||||
|     'bdwdname': bdwdname, |     'bdwdname': bdwdname, | ||||||
|     'columnsrename': columnsrename, |  | ||||||
|     'price_columns': price_columns, |     'price_columns': price_columns, | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| @ -102,32 +101,26 @@ global_config.update({ | |||||||
| 
 | 
 | ||||||
| def push_market_value(): | def push_market_value(): | ||||||
|     config.logger.info('发送预测结果到市场信息平台') |     config.logger.info('发送预测结果到市场信息平台') | ||||||
|  |      | ||||||
|  |     current_end_time = global_config['end_time'] | ||||||
|  |     previous_trading_day = (pd.Timestamp(current_end_time) -  | ||||||
|  |                            pd.tseries.offsets.BusinessDay(1)).strftime('%Y-%m-%d') | ||||||
|  | 
 | ||||||
|     # 读取预测数据和模型评估数据 |     # 读取预测数据和模型评估数据 | ||||||
|     predict_file_path = os.path.join(config.dataset, 'predict.csv') |     best_bdwd_price = find_best_models( | ||||||
|     model_eval_file_path = os.path.join(config.dataset, 'model_evaluation.csv') |         date=previous_trading_day, global_config=global_config) | ||||||
|     try: |      | ||||||
|         predictdata_df = pd.read_csv(predict_file_path) |      # 获取次周,隔周 最佳模型的预测价格 | ||||||
|         top_models_df = pd.read_csv(model_eval_file_path) |     weeks_predict_price = pd.read_csv(os.path.join(global_config['dataset'], 'predict.csv')) | ||||||
|     except FileNotFoundError as e: |     weeks_predict_price['ds'] = pd.to_datetime(weeks_predict_price['ds']) | ||||||
|         config.logger.error(f"文件未找到: {e}") |     # 设置索引 次周 隔周 | ||||||
|         return |     index_labels = ["次周", "隔周"] | ||||||
| 
 |     weeks_predict_price.index = index_labels  | ||||||
|     predictdata = predictdata_df.copy() |     global_config['logger'].info(f"best_bdwd_price: {best_bdwd_price}") | ||||||
| 
 |  | ||||||
|     # 取模型前十 |  | ||||||
|     top_models = top_models_df['模型(Model)'].head(10).tolist() |  | ||||||
|     # 去掉FDBformer |  | ||||||
|     if 'FEDformer' in top_models: |  | ||||||
|         top_models.remove('FEDformer') |  | ||||||
|     # 计算前十模型的均值 |  | ||||||
|     predictdata_df['top_models_mean'] = predictdata_df[top_models].mean(axis=1) |  | ||||||
| 
 |  | ||||||
|     # 打印日期和前十模型均值 |  | ||||||
|     print(predictdata_df[['ds', 'top_models_mean']]) |  | ||||||
| 
 | 
 | ||||||
|     # 准备要推送的数据 |     # 准备要推送的数据 | ||||||
|     first_mean = predictdata_df['top_models_mean'].iloc[0] |     first_mean = weeks_predict_price[best_bdwd_price['second_week_price']['model_name']].iloc[0] | ||||||
|     last_mean = predictdata_df['top_models_mean'].iloc[-1] |     last_mean = weeks_predict_price[best_bdwd_price['next_week_price']['model_name']].iloc[-1] | ||||||
|     # 保留两位小数 |     # 保留两位小数 | ||||||
|     first_mean = round(first_mean, 2) |     first_mean = round(first_mean, 2) | ||||||
|     last_mean = round(last_mean, 2) |     last_mean = round(last_mean, 2) | ||||||
| @ -159,7 +152,7 @@ def push_market_value(): | |||||||
| def sql_inset_predict(global_config): | def sql_inset_predict(global_config): | ||||||
|     df = pd.read_csv(os.path.join(config.dataset, 'predict.csv')) |     df = pd.read_csv(os.path.join(config.dataset, 'predict.csv')) | ||||||
|     df['created_dt'] = pd.to_datetime(df['created_dt']) |     df['created_dt'] = pd.to_datetime(df['created_dt']) | ||||||
|     df['ds'] = pd.to_datetime(df['ds']) |     df['ds'] = pd.to_datetime(df['ds'])  | ||||||
|     # 获取次周预测结果 |     # 获取次周预测结果 | ||||||
|     second_week_price_df = df[df['ds'] == df['ds'].min()] |     second_week_price_df = df[df['ds'] == df['ds'].min()] | ||||||
|     # 获取隔周周预测结果 |     # 获取隔周周预测结果 | ||||||
| @ -472,9 +465,6 @@ def predict_main(): | |||||||
|     #     sqlitedb, end_time=global_config['end_time'], is_fivemodels=global_config['is_fivemodels']) |     #     sqlitedb, end_time=global_config['end_time'], is_fivemodels=global_config['is_fivemodels']) | ||||||
|     # logger.info('训练数据绘图end') |     # logger.info('训练数据绘图end') | ||||||
| 
 | 
 | ||||||
|     push_market_value() |  | ||||||
|     sql_inset_predict(global_config) |  | ||||||
| 
 |  | ||||||
|     # # # 模型报告 |     # # # 模型报告 | ||||||
|     # logger.info('制作报告ing') |     # logger.info('制作报告ing') | ||||||
|     # title = f'{settings}--{end_time}-预测报告'  # 报告标题 |     # title = f'{settings}--{end_time}-预测报告'  # 报告标题 | ||||||
| @ -485,10 +475,8 @@ def predict_main(): | |||||||
| 
 | 
 | ||||||
|     # logger.info('制作报告end') |     # logger.info('制作报告end') | ||||||
| 
 | 
 | ||||||
|     # 图片报告 |     push_market_value() | ||||||
|     logger.info('图片报告ing') |     sql_inset_predict(global_config) | ||||||
|     pp_bdwd_png(global_config=global_config) |  | ||||||
|     logger.info('图片报告end') |  | ||||||
| 
 | 
 | ||||||
|     # # LSTM 单变量模型 |     # # LSTM 单变量模型 | ||||||
|     # ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset) |     # ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset) | ||||||
| @ -515,7 +503,7 @@ def predict_main(): | |||||||
| if __name__ == '__main__': | if __name__ == '__main__': | ||||||
|     # global end_time |     # global end_time | ||||||
|     # 遍历2024-11-25 到 2024-12-3 之间的工作日日期 |     # 遍历2024-11-25 到 2024-12-3 之间的工作日日期 | ||||||
|     # for i_time in pd.date_range('2025-7-18', '2025-7-23', freq='B'): |     # for i_time in pd.date_range('2025-7-28', '2025-7-28', freq='B'): | ||||||
|     #     try: |     #     try: | ||||||
|     #         global_config['end_time'] = i_time.strftime('%Y-%m-%d') |     #         global_config['end_time'] = i_time.strftime('%Y-%m-%d') | ||||||
|     #         global_config['db_mysql'].connect() |     #         global_config['db_mysql'].connect() | ||||||
|  | |||||||
		Loading…
	
		Reference in New Issue
	
	Block a user