聚烯烃PP期货预测
This commit is contained in:
		
							parent
							
								
									97ef8b63a3
								
							
						
					
					
						commit
						f3971a94ec
					
				| @ -397,6 +397,9 @@ get_waring_data_value_list_data = { | ||||
| # 八大维度数据项编码 | ||||
| bdwd_items = { | ||||
|     'ciri': 'jxtppbdwdcr', | ||||
|     'cierri': 'jxtppbdwdcer', | ||||
|     'cisanri': 'jxtppbdwdcsanr', | ||||
|     'cisiri': 'jxtppbdwdcsir', | ||||
|     'benzhou': 'jxtppbdwdbz', | ||||
|     'cizhou': 'jxtppbdwdcz', | ||||
|     'gezhou': 'jxtppbdwdgz', | ||||
|  | ||||
| @ -86,11 +86,14 @@ bdwdname = [ | ||||
|     '次周', | ||||
|     '隔周', | ||||
| ] | ||||
| 
 | ||||
| # 数据库预测结果表八大维度列名 | ||||
| price_columns = [ | ||||
|     'day_price', 'week_price', 'second_week_price', 'next_week_price', | ||||
|     'next_month_price', 'next_february_price', 'next_march_price', 'next_april_price' | ||||
| ] | ||||
| 
 | ||||
| 
 | ||||
| modelsindex = [{ | ||||
|     "NHITS": "SELF0000231", | ||||
|     "Informer": "SELF0000232", | ||||
|  | ||||
| @ -2,7 +2,7 @@ | ||||
| 
 | ||||
| from lib.dataread import * | ||||
| from config_juxiting import * | ||||
| from lib.tools import SendMail, exception_logger, convert_df_to_pydantic_pp, exception_logger, get_modelsname, plot_pp_predict_result | ||||
| from lib.tools import SendMail, exception_logger, convert_df_to_pydantic_pp, exception_logger, find_best_models, get_modelsname, plot_pp_predict_result | ||||
| from models.nerulforcastmodels import ex_Model_Juxiting, model_losss_juxiting, pp_export_pdf | ||||
| import datetime | ||||
| import torch | ||||
| @ -103,49 +103,53 @@ global_config.update({ | ||||
| 
 | ||||
| def push_market_value(): | ||||
|     config.logger.info('发送预测结果到市场信息平台') | ||||
| 
 | ||||
|     current_end_time = global_config['end_time'] | ||||
|     previous_trading_day = (pd.Timestamp(current_end_time) -  | ||||
|                            pd.tseries.offsets.BusinessDay(1)).strftime('%Y-%m-%d') | ||||
| 
 | ||||
|     # 读取预测数据和模型评估数据 | ||||
|     predict_file_path = os.path.join(config.dataset, 'predict.csv') | ||||
|     model_eval_file_path = os.path.join(config.dataset, 'model_evaluation.csv') | ||||
|     try: | ||||
|         predictdata_df = pd.read_csv(predict_file_path) | ||||
|         top_models_df = pd.read_csv(model_eval_file_path) | ||||
|     except FileNotFoundError as e: | ||||
|         config.logger.error(f"文件未找到: {e}") | ||||
|         return | ||||
|     best_bdwd_price = find_best_models( | ||||
|         date=previous_trading_day, global_config=global_config) | ||||
|      | ||||
|     predictdata = predictdata_df.copy() | ||||
| 
 | ||||
|     # 取模型前十 | ||||
|     top_models = top_models_df['模型(Model)'].head(10).tolist() | ||||
|     # 去掉FDBformer | ||||
|     if 'FEDformer' in top_models: | ||||
|         top_models.remove('FEDformer') | ||||
| 
 | ||||
|     # 计算前十模型的均值 | ||||
|     predictdata_df['top_models_mean'] = predictdata_df[top_models].mean(axis=1) | ||||
| 
 | ||||
|     # 打印日期和前十模型均值 | ||||
|     print(predictdata_df[['ds', 'top_models_mean']]) | ||||
| 
 | ||||
|     # 准备要推送的数据 | ||||
|     first_mean = predictdata_df['top_models_mean'].iloc[0] | ||||
|     last_mean = predictdata_df['top_models_mean'].iloc[-1] | ||||
|     # 保留两位小数 | ||||
|     first_mean = round(first_mean, 2) | ||||
|     last_mean = round(last_mean, 2) | ||||
|      # 获取本周最佳模型的五日预测价格 | ||||
|     five_days_predict_price = pd.read_csv('juxitingdataset/predict.csv') | ||||
|     week_price_modelname = best_bdwd_price['week_price']['model_name'] | ||||
|     five_days_predict_price = five_days_predict_price[['ds',week_price_modelname]] | ||||
|     five_days_predict_price['ds'] = pd.to_datetime(five_days_predict_price['ds']) | ||||
|     five_days_predict_price.rename(columns={week_price_modelname:'predictresult'},inplace=True) | ||||
|     # 设置索引 次日 次二日 次三日 次四日  次五日 | ||||
|     index_labels = ["次日", "次二日", "次三日", "次四日", "次五日"] | ||||
|     five_days_predict_price.index = index_labels  | ||||
|     global_config['logger'].info(f"best_bdwd_price: {best_bdwd_price}") | ||||
| 
 | ||||
|     predictdata = [ | ||||
|         { | ||||
|             "dataItemNo": global_config['bdwd_items']['ciri'], | ||||
|             "dataDate": global_config['end_time'].replace('-', ''), | ||||
|             "dataStatus": "add", | ||||
|             "dataValue": first_mean | ||||
|             "dataValue": five_days_predict_price.loc['次日','predictresult'].round(2) | ||||
|         },{ | ||||
|             "dataItemNo": global_config['bdwd_items']['cierri'], | ||||
|             "dataDate": global_config['end_time'].replace('-', ''), | ||||
|             "dataStatus": "add", | ||||
|             "dataValue": five_days_predict_price.loc['次二日','predictresult'].round(2) | ||||
|         },{ | ||||
|             "dataItemNo": global_config['bdwd_items']['cisanri'], | ||||
|             "dataDate": global_config['end_time'].replace('-', ''), | ||||
|             "dataStatus": "add", | ||||
|             "dataValue": five_days_predict_price.loc['次三日','predictresult'].round(2) | ||||
|         },{ | ||||
|             "dataItemNo": global_config['bdwd_items']['cisiri'], | ||||
|             "dataDate": global_config['end_time'].replace('-', ''), | ||||
|             "dataStatus": "add", | ||||
|             "dataValue": five_days_predict_price.loc['次四日','predictresult'].round(2) | ||||
|         }, | ||||
|         { | ||||
|             "dataItemNo": global_config['bdwd_items']['benzhou'], | ||||
|             "dataDate": global_config['end_time'].replace('-', ''), | ||||
|             "dataStatus": "add", | ||||
|             "dataValue": last_mean | ||||
|             "dataValue": five_days_predict_price.loc['次五日','predictresult'].round(2) | ||||
|         } | ||||
|     ] | ||||
| 
 | ||||
| @ -553,7 +557,7 @@ if __name__ == '__main__': | ||||
|     #     except Exception as e: | ||||
|     #         logger.info(f'预测失败:{e}') | ||||
|     #         continue | ||||
| 
 | ||||
|     global_config['end_time'] = '2025-08-04' | ||||
|     predict_main() | ||||
| 
 | ||||
|     # push_market_value() | ||||
|  | ||||
| @ -2,7 +2,7 @@ | ||||
| 
 | ||||
| from lib.dataread import * | ||||
| from config_juxiting_yuedu import * | ||||
| from lib.tools import SendMail, convert_df_to_pydantic_pp, exception_logger, get_modelsname | ||||
| from lib.tools import SendMail, convert_df_to_pydantic_pp, exception_logger, find_best_models, get_modelsname | ||||
| from models.nerulforcastmodels import ex_Model, model_losss_juxiting, pp_bdwd_png, pp_export_pdf | ||||
| import datetime | ||||
| import torch | ||||
| @ -93,35 +93,28 @@ global_config.update({ | ||||
| 
 | ||||
| def push_market_value(): | ||||
|     logger.info('发送预测结果到市场信息平台') | ||||
|     current_end_time = global_config['end_time'] | ||||
|     previous_trading_day = (pd.Timestamp(current_end_time) -  | ||||
|                            pd.tseries.offsets.BusinessDay(1)).strftime('%Y-%m-%d') | ||||
| 
 | ||||
|     # 读取预测数据和模型评估数据 | ||||
|     predict_file_path = os.path.join(config.dataset, 'predict.csv') | ||||
|     model_eval_file_path = os.path.join(config.dataset, 'model_evaluation.csv') | ||||
|     try: | ||||
|         predictdata_df = pd.read_csv(predict_file_path) | ||||
|         top_models_df = pd.read_csv(model_eval_file_path) | ||||
|     except FileNotFoundError as e: | ||||
|         logger.error(f"文件未找到: {e}") | ||||
|         return | ||||
|     best_bdwd_price = find_best_models( | ||||
|         date=previous_trading_day, global_config=global_config) | ||||
|      | ||||
|     predictdata = predictdata_df.copy() | ||||
| 
 | ||||
|     # 取模型前十 | ||||
|     top_models = top_models_df['模型(Model)'].head(10).tolist() | ||||
|     # 去掉FDBformer | ||||
|     if 'FEDformer' in top_models: | ||||
|         top_models.remove('FEDformer') | ||||
|     # 计算前十模型的均值 | ||||
|     predictdata_df['top_models_mean'] = predictdata_df[top_models].mean(axis=1) | ||||
| 
 | ||||
|     # 打印日期和前十模型均值 | ||||
|     print(predictdata_df[['ds', 'top_models_mean']]) | ||||
|      # 获取本月最佳模型的预测价格 | ||||
|     four_month_predict_price = pd.read_csv(os.path.join(global_config['dataset'], 'predict.csv')) | ||||
|     four_month_predict_price['ds'] = pd.to_datetime(four_month_predict_price['ds']) | ||||
|     # 设置索引 次月 次二月 次三月 次四月 | ||||
|     index_labels = ["次月", "次二月", "次三月", "次四月"] | ||||
|     four_month_predict_price.index = index_labels  | ||||
|     global_config['logger'].info(f"best_bdwd_price: {best_bdwd_price}") | ||||
| 
 | ||||
|     # 准备要推送的数据 | ||||
|     ciyue_mean = predictdata_df['top_models_mean'].iloc[0] | ||||
|     cieryue_mean = predictdata_df['top_models_mean'].iloc[1] | ||||
|     cisanyue_mean = predictdata_df['top_models_mean'].iloc[2] | ||||
|     cisieryue_mean = predictdata_df['top_models_mean'].iloc[3] | ||||
|     # 保留两位小数 | ||||
|     ciyue_mean = four_month_predict_price[best_bdwd_price['next_month_price']['model_name']].iloc[0] | ||||
|     cieryue_mean = four_month_predict_price[best_bdwd_price['next_february_price']['model_name']].iloc[1] | ||||
|     cisanyue_mean = four_month_predict_price[best_bdwd_price['next_march_price']['model_name']].iloc[2] | ||||
|     cisieryue_mean = four_month_predict_price[best_bdwd_price['next_april_price']['model_name']].iloc[3] | ||||
|     # # 保留两位小数 | ||||
|     ciyue_mean = round(ciyue_mean, 2) | ||||
|     cieryue_mean = round(cieryue_mean, 2) | ||||
|     cisanyue_mean = round(cisanyue_mean, 2) | ||||
| @ -292,211 +285,211 @@ def predict_main(): | ||||
|     返回: | ||||
|         None | ||||
|     """ | ||||
|     end_time = global_config['end_time'] | ||||
|     signature = BinanceAPI(APPID, SECRET) | ||||
|     etadata = EtaReader(signature=signature, | ||||
|                         classifylisturl=global_config['classifylisturl'], | ||||
|                         classifyidlisturl=global_config['classifyidlisturl'], | ||||
|                         edbcodedataurl=global_config['edbcodedataurl'], | ||||
|                         edbcodelist=global_config['edbcodelist'], | ||||
|                         edbdatapushurl=global_config['edbdatapushurl'], | ||||
|                         edbdeleteurl=global_config['edbdeleteurl'], | ||||
|                         edbbusinessurl=global_config['edbbusinessurl'], | ||||
|                         classifyId=global_config['ClassifyId'], | ||||
|                         ) | ||||
|     # 获取数据 | ||||
|     if is_eta: | ||||
|         logger.info('从eta获取数据...') | ||||
|     # end_time = global_config['end_time'] | ||||
|     # signature = BinanceAPI(APPID, SECRET) | ||||
|     # etadata = EtaReader(signature=signature, | ||||
|     #                     classifylisturl=global_config['classifylisturl'], | ||||
|     #                     classifyidlisturl=global_config['classifyidlisturl'], | ||||
|     #                     edbcodedataurl=global_config['edbcodedataurl'], | ||||
|     #                     edbcodelist=global_config['edbcodelist'], | ||||
|     #                     edbdatapushurl=global_config['edbdatapushurl'], | ||||
|     #                     edbdeleteurl=global_config['edbdeleteurl'], | ||||
|     #                     edbbusinessurl=global_config['edbbusinessurl'], | ||||
|     #                     classifyId=global_config['ClassifyId'], | ||||
|     #                     ) | ||||
|     # # 获取数据 | ||||
|     # if is_eta: | ||||
|     #     logger.info('从eta获取数据...') | ||||
| 
 | ||||
|         df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_pp_data( | ||||
|             data_set=data_set, dataset=dataset)  # 原始数据,未处理 | ||||
|     #     df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_pp_data( | ||||
|     #         data_set=data_set, dataset=dataset)  # 原始数据,未处理 | ||||
| 
 | ||||
|         if is_market: | ||||
|             logger.info('从市场信息平台获取数据...') | ||||
|             try: | ||||
|                 # 如果是测试环境,最高价最低价取excel文档 | ||||
|                 if server_host == '192.168.100.53': | ||||
|                     logger.info('从excel文档获取最高价最低价') | ||||
|                     df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju) | ||||
|                 else: | ||||
|                     logger.info('从市场信息平台获取数据') | ||||
|                     df_zhibiaoshuju = get_market_data( | ||||
|                         end_time, df_zhibiaoshuju) | ||||
| 
 | ||||
|             except: | ||||
|                 logger.info('最高最低价拼接失败') | ||||
| 
 | ||||
|         # 保存到xlsx文件的sheet表 | ||||
|         with pd.ExcelWriter(os.path.join(dataset, data_set)) as file: | ||||
|             df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False) | ||||
|             df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False) | ||||
| 
 | ||||
|         # 数据处理 | ||||
|         df = datachuli_juxiting(df_zhibiaoshuju, df_zhibiaoliebiao, y=global_config['y'], dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture, | ||||
|                                 end_time=end_time) | ||||
| 
 | ||||
|     else: | ||||
|         # 读取数据 | ||||
|         logger.info('读取本地数据:' + os.path.join(dataset, data_set)) | ||||
|         df, df_zhibiaoliebiao = getdata_zhoudu_juxiting(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj, | ||||
|                                                         is_timefurture=is_timefurture, end_time=end_time)  # 原始数据,未处理 | ||||
| 
 | ||||
|     # 更改预测列名称 | ||||
|     df.rename(columns={y: 'y'}, inplace=True) | ||||
| 
 | ||||
|     if is_edbnamelist: | ||||
|         df = df[edbnamelist] | ||||
|     df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False) | ||||
|     # 保存最新日期的y值到数据库 | ||||
|     # 取第一行数据存储到数据库中 | ||||
|     first_row = df[['ds', 'y']].tail(1) | ||||
|     # 判断y的类型是否为float | ||||
|     if not isinstance(first_row['y'].values[0], float): | ||||
|         logger.info(f'{end_time}预测目标数据为空,跳过') | ||||
|         return None | ||||
| 
 | ||||
|     # 将最新真实值保存到数据库 | ||||
|     if not sqlitedb.check_table_exists('trueandpredict'): | ||||
|         first_row.to_sql('trueandpredict', sqlitedb.connection, index=False) | ||||
|     else: | ||||
|         for row in first_row.itertuples(index=False): | ||||
|             row_dict = row._asdict() | ||||
|             config.logger.info(f'要保存的真实值:{row_dict}') | ||||
|             # 判断ds是否为字符串类型,如果不是则转换为字符串类型 | ||||
|             if isinstance(row_dict['ds'], (pd.Timestamp, datetime.datetime)): | ||||
|                 row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d') | ||||
|             elif not isinstance(row_dict['ds'], str): | ||||
|                 try: | ||||
|                     row_dict['ds'] = pd.to_datetime( | ||||
|                         row_dict['ds']).strftime('%Y-%m-%d') | ||||
|                 except: | ||||
|                     logger.warning(f"无法解析的时间格式: {row_dict['ds']}") | ||||
|             # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d') | ||||
|             # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S') | ||||
|             check_query = sqlitedb.select_data( | ||||
|                 'trueandpredict', where_condition=f"ds = '{row.ds}'") | ||||
|             if len(check_query) > 0: | ||||
|                 set_clause = ", ".join( | ||||
|                     [f"{key} = '{value}'" for key, value in row_dict.items()]) | ||||
|                 sqlitedb.update_data( | ||||
|                     'trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'") | ||||
|                 continue | ||||
|             sqlitedb.insert_data('trueandpredict', tuple( | ||||
|                 row_dict.values()), columns=row_dict.keys()) | ||||
| 
 | ||||
|     # 更新accuracy表的y值 | ||||
|     if not sqlitedb.check_table_exists('accuracy'): | ||||
|         pass | ||||
|     else: | ||||
|         update_y = sqlitedb.select_data( | ||||
|             'accuracy', where_condition="y is null") | ||||
|         if len(update_y) > 0: | ||||
|             logger.info('更新accuracy表的y值') | ||||
|             # 找到update_y 中ds且df中的y的行 | ||||
|             update_y = update_y[update_y['ds'] <= end_time] | ||||
|             logger.info(f'要更新y的信息:{update_y}') | ||||
|     #     if is_market: | ||||
|     #         logger.info('从市场信息平台获取数据...') | ||||
|     #         try: | ||||
|             for row in update_y.itertuples(index=False): | ||||
|                 try: | ||||
|                     row_dict = row._asdict() | ||||
|                     yy = df[df['ds'] == row_dict['ds']]['y'].values[0] | ||||
|                     LOW = df[df['ds'] == row_dict['ds']]['Brentzdj'].values[0] | ||||
|                     HIGH = df[df['ds'] == row_dict['ds']]['Brentzgj'].values[0] | ||||
|                     sqlitedb.update_data( | ||||
|                         'accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'") | ||||
|                 except: | ||||
|                     logger.info(f'更新accuracy表的y值失败:{row_dict}') | ||||
|             # except Exception as e: | ||||
|             #     logger.info(f'更新accuracy表的y值失败:{e}') | ||||
|     #             # 如果是测试环境,最高价最低价取excel文档 | ||||
|     #             if server_host == '192.168.100.53': | ||||
|     #                 logger.info('从excel文档获取最高价最低价') | ||||
|     #                 df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju) | ||||
|     #             else: | ||||
|     #                 logger.info('从市场信息平台获取数据') | ||||
|     #                 df_zhibiaoshuju = get_market_data( | ||||
|     #                     end_time, df_zhibiaoshuju) | ||||
| 
 | ||||
|     # 判断当前日期是不是周一 | ||||
|     is_weekday = datetime.datetime.now().weekday() == 0 | ||||
|     if is_weekday: | ||||
|         logger.info('今天是周一,更新预测模型') | ||||
|         # 计算最近60天预测残差最低的模型名称 | ||||
|         model_results = sqlitedb.select_data( | ||||
|             'trueandpredict', order_by="ds DESC", limit="60") | ||||
|         # 删除空值率为90%以上的列 | ||||
|         if len(model_results) > 10: | ||||
|             model_results = model_results.dropna( | ||||
|                 thresh=len(model_results)*0.1, axis=1) | ||||
|         # 删除空行 | ||||
|         model_results = model_results.dropna() | ||||
|         modelnames = model_results.columns.to_list()[2:-1] | ||||
|         for col in model_results[modelnames].select_dtypes(include=['object']).columns: | ||||
|             model_results[col] = model_results[col].astype(np.float32) | ||||
|         # 计算每个预测值与真实值之间的偏差率 | ||||
|         for model in modelnames: | ||||
|             model_results[f'{model}_abs_error_rate'] = abs( | ||||
|                 model_results['y'] - model_results[model]) / model_results['y'] | ||||
|         # 获取每行对应的最小偏差率值 | ||||
|         min_abs_error_rate_values = model_results.apply( | ||||
|             lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1) | ||||
|         # 获取每行对应的最小偏差率值对应的列名 | ||||
|         min_abs_error_rate_column_name = model_results.apply( | ||||
|             lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1) | ||||
|         # 将列名索引转换为列名 | ||||
|         min_abs_error_rate_column_name = min_abs_error_rate_column_name.map( | ||||
|             lambda x: x.split('_')[0]) | ||||
|         # 取出现次数最多的模型名称 | ||||
|         most_common_model = min_abs_error_rate_column_name.value_counts().idxmax() | ||||
|         logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}") | ||||
|         # 保存结果到数据库 | ||||
|         if not sqlitedb.check_table_exists('most_model'): | ||||
|             sqlitedb.create_table( | ||||
|                 'most_model', columns="ds datetime, most_common_model TEXT") | ||||
|         sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime( | ||||
|             '%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',)) | ||||
|     #         except: | ||||
|     #             logger.info('最高最低价拼接失败') | ||||
| 
 | ||||
|     if is_corr: | ||||
|         df = corr_feature(df=df) | ||||
|     #     # 保存到xlsx文件的sheet表 | ||||
|     #     with pd.ExcelWriter(os.path.join(dataset, data_set)) as file: | ||||
|     #         df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False) | ||||
|     #         df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False) | ||||
| 
 | ||||
|     df1 = df.copy()  # 备份一下,后面特征筛选完之后加入ds y 列用 | ||||
|     logger.info(f"开始训练模型...") | ||||
|     row, col = df.shape | ||||
|     #     # 数据处理 | ||||
|     #     df = datachuli_juxiting(df_zhibiaoshuju, df_zhibiaoliebiao, y=global_config['y'], dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture, | ||||
|     #                             end_time=end_time) | ||||
| 
 | ||||
|     now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') | ||||
|     ex_Model(df, | ||||
|              horizon=global_config['horizon'], | ||||
|              input_size=global_config['input_size'], | ||||
|              train_steps=global_config['train_steps'], | ||||
|              val_check_steps=global_config['val_check_steps'], | ||||
|              early_stop_patience_steps=global_config['early_stop_patience_steps'], | ||||
|              is_debug=global_config['is_debug'], | ||||
|              dataset=global_config['dataset'], | ||||
|              is_train=global_config['is_train'], | ||||
|              is_fivemodels=global_config['is_fivemodels'], | ||||
|              val_size=global_config['val_size'], | ||||
|              test_size=global_config['test_size'], | ||||
|              settings=global_config['settings'], | ||||
|              now=now, | ||||
|              etadata=etadata, | ||||
|              modelsindex=global_config['modelsindex'], | ||||
|              data=data, | ||||
|              is_eta=global_config['is_eta'], | ||||
|              end_time=global_config['end_time'], | ||||
|              ) | ||||
|     # else: | ||||
|     #     # 读取数据 | ||||
|     #     logger.info('读取本地数据:' + os.path.join(dataset, data_set)) | ||||
|     #     df, df_zhibiaoliebiao = getdata_zhoudu_juxiting(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj, | ||||
|     #                                                     is_timefurture=is_timefurture, end_time=end_time)  # 原始数据,未处理 | ||||
| 
 | ||||
|     logger.info('模型训练完成') | ||||
|     # # 更改预测列名称 | ||||
|     # df.rename(columns={y: 'y'}, inplace=True) | ||||
| 
 | ||||
|     logger.info('训练数据绘图ing') | ||||
|     model_results3 = model_losss_juxiting( | ||||
|         sqlitedb, end_time=global_config['end_time'], is_fivemodels=global_config['is_fivemodels']) | ||||
|     logger.info('训练数据绘图end') | ||||
|     # if is_edbnamelist: | ||||
|     #     df = df[edbnamelist] | ||||
|     # df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False) | ||||
|     # # 保存最新日期的y值到数据库 | ||||
|     # # 取第一行数据存储到数据库中 | ||||
|     # first_row = df[['ds', 'y']].tail(1) | ||||
|     # # 判断y的类型是否为float | ||||
|     # if not isinstance(first_row['y'].values[0], float): | ||||
|     #     logger.info(f'{end_time}预测目标数据为空,跳过') | ||||
|     #     return None | ||||
| 
 | ||||
|     push_market_value() | ||||
|     # # 将最新真实值保存到数据库 | ||||
|     # if not sqlitedb.check_table_exists('trueandpredict'): | ||||
|     #     first_row.to_sql('trueandpredict', sqlitedb.connection, index=False) | ||||
|     # else: | ||||
|     #     for row in first_row.itertuples(index=False): | ||||
|     #         row_dict = row._asdict() | ||||
|     #         config.logger.info(f'要保存的真实值:{row_dict}') | ||||
|     #         # 判断ds是否为字符串类型,如果不是则转换为字符串类型 | ||||
|     #         if isinstance(row_dict['ds'], (pd.Timestamp, datetime.datetime)): | ||||
|     #             row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d') | ||||
|     #         elif not isinstance(row_dict['ds'], str): | ||||
|     #             try: | ||||
|     #                 row_dict['ds'] = pd.to_datetime( | ||||
|     #                     row_dict['ds']).strftime('%Y-%m-%d') | ||||
|     #             except: | ||||
|     #                 logger.warning(f"无法解析的时间格式: {row_dict['ds']}") | ||||
|     #         # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d') | ||||
|     #         # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S') | ||||
|     #         check_query = sqlitedb.select_data( | ||||
|     #             'trueandpredict', where_condition=f"ds = '{row.ds}'") | ||||
|     #         if len(check_query) > 0: | ||||
|     #             set_clause = ", ".join( | ||||
|     #                 [f"{key} = '{value}'" for key, value in row_dict.items()]) | ||||
|     #             sqlitedb.update_data( | ||||
|     #                 'trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'") | ||||
|     #             continue | ||||
|     #         sqlitedb.insert_data('trueandpredict', tuple( | ||||
|     #             row_dict.values()), columns=row_dict.keys()) | ||||
| 
 | ||||
|     sql_inset_predict(global_config) | ||||
|     # # 更新accuracy表的y值 | ||||
|     # if not sqlitedb.check_table_exists('accuracy'): | ||||
|     #     pass | ||||
|     # else: | ||||
|     #     update_y = sqlitedb.select_data( | ||||
|     #         'accuracy', where_condition="y is null") | ||||
|     #     if len(update_y) > 0: | ||||
|     #         logger.info('更新accuracy表的y值') | ||||
|     #         # 找到update_y 中ds且df中的y的行 | ||||
|     #         update_y = update_y[update_y['ds'] <= end_time] | ||||
|     #         logger.info(f'要更新y的信息:{update_y}') | ||||
|     #         # try: | ||||
|     #         for row in update_y.itertuples(index=False): | ||||
|     #             try: | ||||
|     #                 row_dict = row._asdict() | ||||
|     #                 yy = df[df['ds'] == row_dict['ds']]['y'].values[0] | ||||
|     #                 LOW = df[df['ds'] == row_dict['ds']]['Brentzdj'].values[0] | ||||
|     #                 HIGH = df[df['ds'] == row_dict['ds']]['Brentzgj'].values[0] | ||||
|     #                 sqlitedb.update_data( | ||||
|     #                     'accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'") | ||||
|     #             except: | ||||
|     #                 logger.info(f'更新accuracy表的y值失败:{row_dict}') | ||||
|     #         # except Exception as e: | ||||
|     #         #     logger.info(f'更新accuracy表的y值失败:{e}') | ||||
| 
 | ||||
|     # 模型报告 | ||||
|     logger.info('制作报告ing') | ||||
|     title = f'{settings}--{end_time}-预测报告'  # 报告标题 | ||||
|     reportname = f'聚烯烃PP大模型月度预测--{end_time}.pdf'  # 报告文件名 | ||||
|     reportname = reportname.replace(':', '-')  # 替换冒号 | ||||
|     pp_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time, | ||||
|                   reportname=reportname, sqlitedb=sqlitedb), | ||||
|     # # 判断当前日期是不是周一 | ||||
|     # is_weekday = datetime.datetime.now().weekday() == 0 | ||||
|     # if is_weekday: | ||||
|     #     logger.info('今天是周一,更新预测模型') | ||||
|     #     # 计算最近60天预测残差最低的模型名称 | ||||
|     #     model_results = sqlitedb.select_data( | ||||
|     #         'trueandpredict', order_by="ds DESC", limit="60") | ||||
|     #     # 删除空值率为90%以上的列 | ||||
|     #     if len(model_results) > 10: | ||||
|     #         model_results = model_results.dropna( | ||||
|     #             thresh=len(model_results)*0.1, axis=1) | ||||
|     #     # 删除空行 | ||||
|     #     model_results = model_results.dropna() | ||||
|     #     modelnames = model_results.columns.to_list()[2:-1] | ||||
|     #     for col in model_results[modelnames].select_dtypes(include=['object']).columns: | ||||
|     #         model_results[col] = model_results[col].astype(np.float32) | ||||
|     #     # 计算每个预测值与真实值之间的偏差率 | ||||
|     #     for model in modelnames: | ||||
|     #         model_results[f'{model}_abs_error_rate'] = abs( | ||||
|     #             model_results['y'] - model_results[model]) / model_results['y'] | ||||
|     #     # 获取每行对应的最小偏差率值 | ||||
|     #     min_abs_error_rate_values = model_results.apply( | ||||
|     #         lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1) | ||||
|     #     # 获取每行对应的最小偏差率值对应的列名 | ||||
|     #     min_abs_error_rate_column_name = model_results.apply( | ||||
|     #         lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1) | ||||
|     #     # 将列名索引转换为列名 | ||||
|     #     min_abs_error_rate_column_name = min_abs_error_rate_column_name.map( | ||||
|     #         lambda x: x.split('_')[0]) | ||||
|     #     # 取出现次数最多的模型名称 | ||||
|     #     most_common_model = min_abs_error_rate_column_name.value_counts().idxmax() | ||||
|     #     logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}") | ||||
|     #     # 保存结果到数据库 | ||||
|     #     if not sqlitedb.check_table_exists('most_model'): | ||||
|     #         sqlitedb.create_table( | ||||
|     #             'most_model', columns="ds datetime, most_common_model TEXT") | ||||
|     #     sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime( | ||||
|     #         '%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',)) | ||||
| 
 | ||||
|     logger.info('制作报告end') | ||||
|     # if is_corr: | ||||
|     #     df = corr_feature(df=df) | ||||
| 
 | ||||
|     # df1 = df.copy()  # 备份一下,后面特征筛选完之后加入ds y 列用 | ||||
|     # logger.info(f"开始训练模型...") | ||||
|     # row, col = df.shape | ||||
| 
 | ||||
|     # now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') | ||||
|     # ex_Model(df, | ||||
|     #          horizon=global_config['horizon'], | ||||
|     #          input_size=global_config['input_size'], | ||||
|     #          train_steps=global_config['train_steps'], | ||||
|     #          val_check_steps=global_config['val_check_steps'], | ||||
|     #          early_stop_patience_steps=global_config['early_stop_patience_steps'], | ||||
|     #          is_debug=global_config['is_debug'], | ||||
|     #          dataset=global_config['dataset'], | ||||
|     #          is_train=global_config['is_train'], | ||||
|     #          is_fivemodels=global_config['is_fivemodels'], | ||||
|     #          val_size=global_config['val_size'], | ||||
|     #          test_size=global_config['test_size'], | ||||
|     #          settings=global_config['settings'], | ||||
|     #          now=now, | ||||
|     #          etadata=etadata, | ||||
|     #          modelsindex=global_config['modelsindex'], | ||||
|     #          data=data, | ||||
|     #          is_eta=global_config['is_eta'], | ||||
|     #          end_time=global_config['end_time'], | ||||
|     #          ) | ||||
| 
 | ||||
|     # logger.info('模型训练完成') | ||||
| 
 | ||||
|     # logger.info('训练数据绘图ing') | ||||
|     # model_results3 = model_losss_juxiting( | ||||
|     #     sqlitedb, end_time=global_config['end_time'], is_fivemodels=global_config['is_fivemodels']) | ||||
|     # logger.info('训练数据绘图end') | ||||
| 
 | ||||
|     # push_market_value() | ||||
| 
 | ||||
|     # sql_inset_predict(global_config) | ||||
| 
 | ||||
|     # # 模型报告 | ||||
|     # logger.info('制作报告ing') | ||||
|     # title = f'{settings}--{end_time}-预测报告'  # 报告标题 | ||||
|     # reportname = f'聚烯烃PP大模型月度预测--{end_time}.pdf'  # 报告文件名 | ||||
|     # reportname = reportname.replace(':', '-')  # 替换冒号 | ||||
|     # pp_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time, | ||||
|     #               reportname=reportname, sqlitedb=sqlitedb), | ||||
| 
 | ||||
|     # logger.info('制作报告end') | ||||
| 
 | ||||
|     # 图片报告 | ||||
|     logger.info('图片报告ing') | ||||
| @ -538,6 +531,7 @@ if __name__ == '__main__': | ||||
|     #         continue | ||||
| 
 | ||||
|     predict_main()  | ||||
|     # push_market_value() | ||||
| 
 | ||||
|     #  图片报告 | ||||
|     # global_config['end_time'] = '2025-07-31' | ||||
|  | ||||
| @ -2,8 +2,8 @@ | ||||
| 
 | ||||
| from lib.dataread import * | ||||
| from config_juxiting_zhoudu import * | ||||
| from lib.tools import SendMail, exception_logger, convert_df_to_pydantic_pp, exception_logger, get_modelsname | ||||
| from models.nerulforcastmodels import ex_Model_Juxiting, model_losss_juxiting, pp_bdwd_png, pp_export_pdf | ||||
| from lib.tools import SendMail, exception_logger, convert_df_to_pydantic_pp, exception_logger, find_best_models, get_modelsname | ||||
| from models.nerulforcastmodels import ex_Model_Juxiting, model_losss_juxiting, pp_export_pdf | ||||
| import datetime | ||||
| import torch | ||||
| torch.set_float32_matmul_precision("high") | ||||
| @ -23,7 +23,6 @@ global_config.update({ | ||||
|     'is_update_report': is_update_report, | ||||
|     'settings': settings, | ||||
|     'bdwdname': bdwdname, | ||||
|     'columnsrename': columnsrename, | ||||
|     'price_columns': price_columns, | ||||
| 
 | ||||
| 
 | ||||
| @ -102,32 +101,26 @@ global_config.update({ | ||||
| 
 | ||||
| def push_market_value(): | ||||
|     config.logger.info('发送预测结果到市场信息平台') | ||||
|      | ||||
|     current_end_time = global_config['end_time'] | ||||
|     previous_trading_day = (pd.Timestamp(current_end_time) -  | ||||
|                            pd.tseries.offsets.BusinessDay(1)).strftime('%Y-%m-%d') | ||||
| 
 | ||||
|     # 读取预测数据和模型评估数据 | ||||
|     predict_file_path = os.path.join(config.dataset, 'predict.csv') | ||||
|     model_eval_file_path = os.path.join(config.dataset, 'model_evaluation.csv') | ||||
|     try: | ||||
|         predictdata_df = pd.read_csv(predict_file_path) | ||||
|         top_models_df = pd.read_csv(model_eval_file_path) | ||||
|     except FileNotFoundError as e: | ||||
|         config.logger.error(f"文件未找到: {e}") | ||||
|         return | ||||
|     best_bdwd_price = find_best_models( | ||||
|         date=previous_trading_day, global_config=global_config) | ||||
|      | ||||
|     predictdata = predictdata_df.copy() | ||||
| 
 | ||||
|     # 取模型前十 | ||||
|     top_models = top_models_df['模型(Model)'].head(10).tolist() | ||||
|     # 去掉FDBformer | ||||
|     if 'FEDformer' in top_models: | ||||
|         top_models.remove('FEDformer') | ||||
|     # 计算前十模型的均值 | ||||
|     predictdata_df['top_models_mean'] = predictdata_df[top_models].mean(axis=1) | ||||
| 
 | ||||
|     # 打印日期和前十模型均值 | ||||
|     print(predictdata_df[['ds', 'top_models_mean']]) | ||||
|      # 获取次周,隔周 最佳模型的预测价格 | ||||
|     weeks_predict_price = pd.read_csv(os.path.join(global_config['dataset'], 'predict.csv')) | ||||
|     weeks_predict_price['ds'] = pd.to_datetime(weeks_predict_price['ds']) | ||||
|     # 设置索引 次周 隔周 | ||||
|     index_labels = ["次周", "隔周"] | ||||
|     weeks_predict_price.index = index_labels  | ||||
|     global_config['logger'].info(f"best_bdwd_price: {best_bdwd_price}") | ||||
| 
 | ||||
|     # 准备要推送的数据 | ||||
|     first_mean = predictdata_df['top_models_mean'].iloc[0] | ||||
|     last_mean = predictdata_df['top_models_mean'].iloc[-1] | ||||
|     first_mean = weeks_predict_price[best_bdwd_price['second_week_price']['model_name']].iloc[0] | ||||
|     last_mean = weeks_predict_price[best_bdwd_price['next_week_price']['model_name']].iloc[-1] | ||||
|     # 保留两位小数 | ||||
|     first_mean = round(first_mean, 2) | ||||
|     last_mean = round(last_mean, 2) | ||||
| @ -472,9 +465,6 @@ def predict_main(): | ||||
|     #     sqlitedb, end_time=global_config['end_time'], is_fivemodels=global_config['is_fivemodels']) | ||||
|     # logger.info('训练数据绘图end') | ||||
| 
 | ||||
|     push_market_value() | ||||
|     sql_inset_predict(global_config) | ||||
| 
 | ||||
|     # # # 模型报告 | ||||
|     # logger.info('制作报告ing') | ||||
|     # title = f'{settings}--{end_time}-预测报告'  # 报告标题 | ||||
| @ -485,10 +475,8 @@ def predict_main(): | ||||
| 
 | ||||
|     # logger.info('制作报告end') | ||||
| 
 | ||||
|     # 图片报告 | ||||
|     logger.info('图片报告ing') | ||||
|     pp_bdwd_png(global_config=global_config) | ||||
|     logger.info('图片报告end') | ||||
|     push_market_value() | ||||
|     sql_inset_predict(global_config) | ||||
| 
 | ||||
|     # # LSTM 单变量模型 | ||||
|     # ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset) | ||||
| @ -515,7 +503,7 @@ def predict_main(): | ||||
| if __name__ == '__main__': | ||||
|     # global end_time | ||||
|     # 遍历2024-11-25 到 2024-12-3 之间的工作日日期 | ||||
|     # for i_time in pd.date_range('2025-7-18', '2025-7-23', freq='B'): | ||||
|     # for i_time in pd.date_range('2025-7-28', '2025-7-28', freq='B'): | ||||
|     #     try: | ||||
|     #         global_config['end_time'] = i_time.strftime('%Y-%m-%d') | ||||
|     #         global_config['db_mysql'].connect() | ||||
|  | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user