预测结果判断近20个交易日的最佳模型
This commit is contained in:
parent
dbaf99fe38
commit
f4eea44c8c
@ -210,7 +210,7 @@ upload_data = {
|
||||
|
||||
### 开关
|
||||
is_train = True # 是否训练
|
||||
is_debug = True # 是否调试
|
||||
is_debug = False # 是否调试
|
||||
is_eta = False # 是否使用eta接口
|
||||
is_timefurture = True # 是否使用时间特征
|
||||
is_fivemodels = False # 是否使用之前保存的最佳的5个模型
|
||||
|
56
main.py
56
main.py
@ -39,8 +39,8 @@ def predict_main():
|
||||
edbbusinessurl=edbbusinessurl,
|
||||
)
|
||||
|
||||
df_zhibiaoshuju,df_zhibiaoliebiao = etadata.get_eta_api_yuanyou_data(data_set=data_set,dataset=dataset) # 原始数据,未处理
|
||||
# df_zhibiaoshuju,df_zhibiaoliebiao = etadata.get_eta_api_pp_data(data_set=data_set,dataset=dataset) # 原始数据,未处理
|
||||
# df_zhibiaoshuju,df_zhibiaoliebiao = etadata.get_eta_api_yuanyou_data(data_set=data_set,dataset=dataset) # 原始数据,未处理
|
||||
df_zhibiaoshuju,df_zhibiaoliebiao = etadata.get_eta_api_pp_data(data_set=data_set,dataset=dataset) # 原始数据,未处理
|
||||
|
||||
|
||||
# 数据处理
|
||||
@ -118,36 +118,36 @@ def predict_main():
|
||||
row,col = df.shape
|
||||
|
||||
now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
|
||||
# ex_Model(df,
|
||||
# horizon=horizon,
|
||||
# input_size=input_size,
|
||||
# train_steps=train_steps,
|
||||
# val_check_steps=val_check_steps,
|
||||
# early_stop_patience_steps=early_stop_patience_steps,
|
||||
# is_debug=is_debug,
|
||||
# dataset=dataset,
|
||||
# is_train=is_train,
|
||||
# is_fivemodels=is_fivemodels,
|
||||
# val_size=val_size,
|
||||
# test_size=test_size,
|
||||
# settings=settings,
|
||||
# now=now,
|
||||
# etadata = etadata,
|
||||
# modelsindex = modelsindex,
|
||||
# data = data,
|
||||
# is_eta=is_eta,
|
||||
# )
|
||||
ex_Model(df,
|
||||
horizon=horizon,
|
||||
input_size=input_size,
|
||||
train_steps=train_steps,
|
||||
val_check_steps=val_check_steps,
|
||||
early_stop_patience_steps=early_stop_patience_steps,
|
||||
is_debug=is_debug,
|
||||
dataset=dataset,
|
||||
is_train=is_train,
|
||||
is_fivemodels=is_fivemodels,
|
||||
val_size=val_size,
|
||||
test_size=test_size,
|
||||
settings=settings,
|
||||
now=now,
|
||||
etadata = etadata,
|
||||
modelsindex = modelsindex,
|
||||
data = data,
|
||||
is_eta=is_eta,
|
||||
)
|
||||
|
||||
# # 模型评估
|
||||
model_results3 = model_losss_juxiting(sqlitedb)
|
||||
# 模型报告
|
||||
|
||||
# title = f'{settings}--{now}-预测报告' # 报告标题
|
||||
# brent_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,time=end_time,
|
||||
# reportname=reportname,sqlitedb=sqlitedb),
|
||||
# # pp_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,time=end_time,
|
||||
# # reportname=reportname),
|
||||
# logger.info('模型训练完成')
|
||||
title = f'{settings}--{now}-预测报告' # 报告标题
|
||||
brent_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,time=end_time,
|
||||
reportname=reportname,sqlitedb=sqlitedb),
|
||||
# pp_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,time=end_time,
|
||||
# reportname=reportname),
|
||||
logger.info('模型训练完成')
|
||||
|
||||
# tansuanli_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,end_time=end_time,reportname=reportname)
|
||||
|
||||
@ -170,7 +170,7 @@ def predict_main():
|
||||
file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime),
|
||||
ssl=ssl,
|
||||
)
|
||||
# m.send_mail()
|
||||
m.send_mail()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
@ -510,33 +510,11 @@ def model_losss_juxiting(sqlitedb):
|
||||
|
||||
|
||||
# 使用最佳五个模型进行绘图
|
||||
best_models = pd.read_csv(os.path.join(dataset,'best_modelnames.txt'),header=None).values.flatten().tolist()
|
||||
def find_min_max_within_quantile(row):
|
||||
row = row[best_models]
|
||||
q10 = row.min()
|
||||
q90 = row.max()
|
||||
# 获取 row行10%分位值对应的模型名称
|
||||
min_model = row[row == q10].idxmin()
|
||||
max_model = row[row == q90].idxmin()
|
||||
|
||||
# # 判断flot值是否为空值
|
||||
# if pd.isna(q10) or pd.isna(q90):
|
||||
return pd.Series([q10, q90,min_model,max_model], index=['min_within_quantile','max_within_quantile','min_model','max_model'])
|
||||
|
||||
# 遍历行
|
||||
df_combined3[['min_within_quantile', 'max_within_quantile','min_model','max_model']] = df_combined3.apply(find_min_max_within_quantile, axis=1)
|
||||
df_combined = df_combined.round(4)
|
||||
print(df_combined3)
|
||||
|
||||
|
||||
|
||||
|
||||
# 通道使用预测模型的80%置信度
|
||||
# best_models = pd.read_csv(os.path.join(dataset,'best_modelnames.txt'),header=None).values.flatten().tolist()
|
||||
# def find_min_max_within_quantile(row):
|
||||
# row.drop(['ds','y'], inplace=True)
|
||||
# # 获取分位数10%和90%的值
|
||||
# q10 = row.quantile(0.1)
|
||||
# q90 = row.quantile(0.9)
|
||||
# row = row[best_models]
|
||||
# q10 = row.min()
|
||||
# q90 = row.max()
|
||||
# # 获取 row行10%分位值对应的模型名称
|
||||
# min_model = row[row == q10].idxmin()
|
||||
# max_model = row[row == q90].idxmin()
|
||||
@ -549,6 +527,28 @@ def model_losss_juxiting(sqlitedb):
|
||||
# df_combined3[['min_within_quantile', 'max_within_quantile','min_model','max_model']] = df_combined3.apply(find_min_max_within_quantile, axis=1)
|
||||
# df_combined = df_combined.round(4)
|
||||
# print(df_combined3)
|
||||
|
||||
|
||||
|
||||
|
||||
# 通道使用预测模型的80%置信度
|
||||
def find_min_max_within_quantile(row):
|
||||
row.drop(['ds','y'], inplace=True)
|
||||
# 获取分位数10%和90%的值
|
||||
q10 = row.quantile(0.1)
|
||||
q90 = row.quantile(0.9)
|
||||
# 获取 row行10%分位值对应的模型名称
|
||||
min_model = row[row == q10].index[0]
|
||||
max_model = row[row == q90].index[0]
|
||||
|
||||
# # 判断flot值是否为空值
|
||||
# if pd.isna(q10) or pd.isna(q90):
|
||||
return pd.Series([q10, q90,min_model,max_model], index=['min_within_quantile','max_within_quantile','min_model','max_model'])
|
||||
|
||||
# 遍历行
|
||||
df_combined3[['min_within_quantile', 'max_within_quantile','min_model','max_model']] = df_combined3.apply(find_min_max_within_quantile, axis=1)
|
||||
df_combined = df_combined.round(4)
|
||||
print(df_combined3)
|
||||
|
||||
|
||||
|
||||
@ -679,8 +679,8 @@ def model_losss_juxiting(sqlitedb):
|
||||
|
||||
|
||||
# 最多频率的模型名称
|
||||
min_model_max_frequency_model = df_combined3['min_model'].value_counts().idxmax()
|
||||
max_model_max_frequency_model = df_combined3['max_model'].value_counts().idxmax()
|
||||
min_model_max_frequency_model = df_combined3['min_model'].tail(20).value_counts().idxmax()
|
||||
max_model_max_frequency_model = df_combined3['max_model'].tail(20).value_counts().idxmax()
|
||||
df_predict['min_model'] = min_model_max_frequency_model
|
||||
df_predict['max_model'] = max_model_max_frequency_model
|
||||
df_predict['min_within_quantile'] = df_predict[min_model_max_frequency_model]
|
||||
|
Loading…
Reference in New Issue
Block a user