石油焦铝用日度预测代码

This commit is contained in:
jingboyitiji 2025-03-25 11:02:10 +08:00
parent f5286990fa
commit fa59c1cff4
3 changed files with 280 additions and 220 deletions

View File

@ -143,7 +143,7 @@ modelsindex = {
} }
# 百川数据指标编码 # 百川数据指标编码
baicangidnamedict = { baichuanidnamedict = {
'1588348470396480000': '石油焦滨州-友泰', '1588348470396480000': '石油焦滨州-友泰',
'1588348470396480000.00': '石油焦东营-海科瑞林', '1588348470396480000.00': '石油焦东营-海科瑞林',
'1588348470396480000.00': '石油焦东营-华联2', '1588348470396480000.00': '石油焦东营-华联2',
@ -160,6 +160,8 @@ baicangidnamedict = {
} }
# baichuanidnamedict = {'1588348470396475286': 'test1', '1666': 'test2'} # 北京环境测试用
# eta 上传预测结果的请求体,后面发起请求的时候更改 model datalist 数据 # eta 上传预测结果的请求体,后面发起请求的时候更改 model datalist 数据
data = { data = {
"IndexCode": "", "IndexCode": "",
@ -272,14 +274,14 @@ push_data_value_list_data = {
} }
# 八大维度数据项编码 # 八大维度数据项编码
bdwd_items = { bdwd_items = {
# 'ciri': 'yyycbdwdcr', 'ciri': 'syjlyycbdwdcr',
# 'benzhou': 'yyycbdwdbz', 'benzhou': 'syjlyycbdwdbz',
# 'cizhou': 'yyycbdwdcz', 'cizhou': 'syjlyycbdwdcz',
# 'gezhou': 'yyycbdwdgz', 'gezhou': 'syjlyycbdwdgz',
# 'ciyue': 'yyycbdwdcy', 'ciyue': 'syjlyycbdwdcy',
# 'cieryue': 'yyycbdwdcey', 'cieryue': 'syjlyycbdwdcey',
# 'cisanyue': 'yyycbdwdcsy', 'cisanyue': 'syjlyycbdwdcsy',
# 'cisiyue': 'yyycbdwdcsiy', 'cisiyue': 'syjlyycbdwdcsiy',
} }
# 北京环境数据库 # 北京环境数据库
@ -326,7 +328,7 @@ if add_kdj and is_edbnamelist:
edbnamelist = edbnamelist+['K', 'D', 'J'] edbnamelist = edbnamelist+['K', 'D', 'J']
# 模型参数 # 模型参数
y = 'B46cc7d0a90155b5bfd' y = '煅烧焦山东高硫(高端S < 3.5,普货)(元/吨)'
avg_cols = [ avg_cols = [
] ]

View File

@ -57,6 +57,7 @@ global_config = {
'y': None, # 目标变量列名 'y': None, # 目标变量列名
'is_fivemodels': None, 'is_fivemodels': None,
'weight_dict': None, 'weight_dict': None,
'baicangidnamedict': None, # 百川id名称映射
# 模型参数 # 模型参数
'data_set': None, # 数据集名称 'data_set': None, # 数据集名称
@ -120,6 +121,8 @@ global_config = {
# 数据库配置 # 数据库配置
'sqlitedb': None, 'sqlitedb': None,
'db_mysql': None,
'baichuan_table_name': None,
} }
# 定义函数 # 定义函数
@ -1199,6 +1202,8 @@ class Config:
# 数据库配置 # 数据库配置
@property @property
def sqlitedb(self): return global_config['sqlitedb'] def sqlitedb(self): return global_config['sqlitedb']
@property
def db_mysql(self): return global_config['db_mysql']
config = Config() config = Config()
@ -2213,3 +2218,38 @@ def addtimecharacteristics(df, dataset):
df.drop(columns=['quarter_start', 'quarter'], inplace=True) df.drop(columns=['quarter_start', 'quarter'], inplace=True)
df.to_csv(os.path.join(dataset, '指标数据添加时间特征.csv'), index=False) df.to_csv(os.path.join(dataset, '指标数据添加时间特征.csv'), index=False)
return df return df
# 从数据库获取百川数据接收一个百川id列表返回df格式的数据
def get_baichuan_data(baichuanidnamedict):
baichuanidlist = list(baichuanidnamedict.keys())
# 连接数据库
db = config.db_mysql
db.connect()
# 执行SQL查询 select BAICHUAN_ID,DATA_DATE,DATA_VALUE from V_TBL_BAICHUAN_YINGFU_VALUE where BAICHUAN_ID in ('1588348470396475286','1666');
sql = f"SELECT BAICHUAN_ID,DATA_DATE,DATA_VALUE FROM {global_config['baichuan_table_name']} WHERE BAICHUAN_ID in ({','.join(baichuanidlist)})"
# 获取查询结果
results = db.execute_query(sql)
df = pd.DataFrame(results, columns=[
'BAICHUAN_ID', 'DATA_DATE', 'DATA_VALUE'])
# 按BAICHUAN_ID 进行分组然后按DATA_DATE合并
df1 = pd.DataFrame(columns=['DATA_DATE'])
for baichuan_id, group in df.groupby('BAICHUAN_ID'):
# group 删除BAICHUAN_ID列
group.drop(columns=['BAICHUAN_ID'], inplace=True)
# group DATA_value 转换为float类型,保留两位小数
group['DATA_VALUE'] = group['DATA_VALUE'].astype(float).round(2)
# group 更改列名
group.rename(
columns={'DATA_VALUE': baichuanidnamedict[baichuan_id]}, inplace=True)
# 按DATA_DATE合并
df1 = pd.merge(
df1, group[['DATA_DATE', baichuanidnamedict[baichuan_id]]], on='DATA_DATE', how='outer')
# 把DATA_DATE 列转换成日期格式
df1['date'] = pd.to_datetime(
df1['DATA_DATE']).dt.strftime('%Y-%m-%d')
df1.drop(columns=['DATA_DATE'], inplace=True)
return df1

View File

@ -3,7 +3,7 @@
from lib.dataread import * from lib.dataread import *
from config_shiyoujiao_lvyong import * from config_shiyoujiao_lvyong import *
from lib.tools import SendMail, exception_logger from lib.tools import SendMail, exception_logger
from models.nerulforcastmodels import model_losss, shiyoujiao_lvyong_export_pdf from models.nerulforcastmodels import ex_Model, model_losss, model_losss_juxiting, brent_export_pdf, tansuanli_export_pdf, pp_export_pdf, model_losss_juxiting
import datetime import datetime
import torch import torch
torch.set_float32_matmul_precision("high") torch.set_float32_matmul_precision("high")
@ -18,6 +18,7 @@ global_config.update({
'is_fivemodels': is_fivemodels, 'is_fivemodels': is_fivemodels,
'settings': settings, 'settings': settings,
'weight_dict': weight_dict, 'weight_dict': weight_dict,
'baichuanidnamedict': baichuanidnamedict,
# 模型参数 # 模型参数
@ -72,11 +73,14 @@ global_config.update({
'edbdatapushurl': edbdatapushurl, 'edbdatapushurl': edbdatapushurl,
'edbdeleteurl': edbdeleteurl, 'edbdeleteurl': edbdeleteurl,
'edbbusinessurl': edbbusinessurl, 'edbbusinessurl': edbbusinessurl,
'edbcodenamedict': edbcodenamedict,
'ClassifyId': ClassifyId, 'ClassifyId': ClassifyId,
'classifylisturl': classifylisturl, 'classifylisturl': classifylisturl,
# 数据库配置 # 数据库配置
'sqlitedb': sqlitedb, 'sqlitedb': sqlitedb,
'db_mysql': db_mysql,
'baichuan_table_name': baichuan_table_name,
}) })
@ -173,228 +177,242 @@ def predict_main():
返回: 返回:
None None
""" """
# end_time = global_config['end_time']
# # 获取数据
# if is_eta:
# logger.info('从eta获取数据...')
# signature = BinanceAPI(APPID, SECRET)
# etadata = EtaReader(signature=signature,
# classifylisturl=global_config['classifylisturl'],
# classifyidlisturl=global_config['classifyidlisturl'],
# edbcodedataurl=global_config['edbcodedataurl'],
# edbcodelist=global_config['edbcodelist'],
# edbdatapushurl=global_config['edbdatapushurl'],
# edbdeleteurl=global_config['edbdeleteurl'],
# edbbusinessurl=global_config['edbbusinessurl'],
# classifyId=global_config['ClassifyId'],
# )
# df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_shiyoujiao_lvyong_data(
# data_set=data_set, dataset=dataset) # 原始数据,未处理
# if is_market: end_time = global_config['end_time']
# logger.info('从市场信息平台获取数据...') # 获取数据
# try: if is_eta:
# # 如果是测试环境最高价最低价取excel文档 logger.info('从eta获取数据...')
# if server_host == '192.168.100.53': signature = BinanceAPI(APPID, SECRET)
# logger.info('从excel文档获取最高价最低价') etadata = EtaReader(signature=signature,
# df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju) classifylisturl=global_config['classifylisturl'],
# else: classifyidlisturl=global_config['classifyidlisturl'],
# logger.info('从市场信息平台获取数据') edbcodedataurl=global_config['edbcodedataurl'],
# df_zhibiaoshuju = get_market_data( edbcodelist=global_config['edbcodelist'],
# end_time, df_zhibiaoshuju) edbdatapushurl=global_config['edbdatapushurl'],
edbdeleteurl=global_config['edbdeleteurl'],
edbbusinessurl=global_config['edbbusinessurl'],
classifyId=global_config['ClassifyId'],
)
df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_shiyoujiao_lvyong_data(
data_set=data_set, dataset=dataset) # 原始数据,未处理
# except: if is_market:
# logger.info('最高最低价拼接失败') logger.info('从市场信息平台获取数据...')
try:
# 如果是测试环境最高价最低价取excel文档
if server_host == '192.168.100.53':
logger.info('从excel文档获取最高价最低价')
df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju)
else:
logger.info('从市场信息平台获取数据')
df_zhibiaoshuju = get_market_data(
end_time, df_zhibiaoshuju)
# # 保存到xlsx文件的sheet表 except:
# with pd.ExcelWriter(os.path.join(dataset, data_set)) as file: logger.info('最高最低价拼接失败')
# df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False)
# df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False)
# # 数据处理 if len(global_config['baichuanidnamedict']) > 0:
# df = datachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=global_config['y'], dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture, logger.info('从市场数据库获取百川数据...')
# end_time=end_time) baichuandf = get_baichuan_data(global_config['baichuanidnamedict'])
df_zhibiaoshuju = pd.merge(
df_zhibiaoshuju, baichuandf, on='date', how='outer')
# 指标列表添加百川数据
df_baichuanliebiao = pd.DataFrame(
global_config['baichuanidnamedict'].items(), columns=['指标id', '指标名称'])
df_baichuanliebiao['指标分类'] = '百川'
df_baichuanliebiao['频度'] = '其他'
df_zhibiaoliebiao = pd.concat(
[df_zhibiaoliebiao, df_baichuanliebiao], axis=0)
# else: # 保存到xlsx文件的sheet表
# # 读取数据 with pd.ExcelWriter(os.path.join(dataset, data_set)) as file:
# logger.info('读取本地数据:' + os.path.join(dataset, data_set)) df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False)
# df, df_zhibiaoliebiao = getdata(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj, df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False)
# is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理
# # 更改预测列名称 # 数据处理
# df.rename(columns={y: 'y'}, inplace=True) df = datachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=global_config['y'], dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture,
end_time=end_time)
# if is_edbnamelist: else:
# df = df[edbnamelist] # 读取数据
# df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False) logger.info('读取本地数据:' + os.path.join(dataset, data_set))
# # 保存最新日期的y值到数据库 df, df_zhibiaoliebiao = getdata(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj,
# # 取第一行数据存储到数据库中 is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理
# first_row = df[['ds', 'y']].tail(1)
# # 判断y的类型是否为float
# if not isinstance(first_row['y'].values[0], float):
# logger.info(f'{end_time}预测目标数据为空,跳过')
# return None
# # 将最新真实值保存到数据库 # 更改预测列名称
# if not sqlitedb.check_table_exists('trueandpredict'): df.rename(columns={y: 'y'}, inplace=True)
# first_row.to_sql('trueandpredict', sqlitedb.connection, index=False)
# else:
# for row in first_row.itertuples(index=False):
# row_dict = row._asdict()
# config.logger.info(f'要保存的真实值:{row_dict}')
# # 判断ds是否为字符串类型,如果不是则转换为字符串类型
# if isinstance(row_dict['ds'], (pd.Timestamp, datetime.datetime)):
# row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
# elif not isinstance(row_dict['ds'], str):
# try:
# row_dict['ds'] = pd.to_datetime(
# row_dict['ds']).strftime('%Y-%m-%d')
# except:
# logger.warning(f"无法解析的时间格式: {row_dict['ds']}")
# # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
# # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S')
# check_query = sqlitedb.select_data(
# 'trueandpredict', where_condition=f"ds = '{row.ds}'")
# if len(check_query) > 0:
# set_clause = ", ".join(
# [f"{key} = '{value}'" for key, value in row_dict.items()])
# sqlitedb.update_data(
# 'trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'")
# continue
# sqlitedb.insert_data('trueandpredict', tuple(
# row_dict.values()), columns=row_dict.keys())
# # 更新accuracy表的y值 if is_edbnamelist:
# if not sqlitedb.check_table_exists('accuracy'): df = df[edbnamelist]
# pass df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False)
# else: # 保存最新日期的y值到数据库
# update_y = sqlitedb.select_data( # 取第一行数据存储到数据库中
# 'accuracy', where_condition="y is null") first_row = df[['ds', 'y']].tail(1)
# if len(update_y) > 0: # 判断y的类型是否为float
# logger.info('更新accuracy表的y值') if not isinstance(first_row['y'].values[0], float):
# # 找到update_y 中ds且df中的y的行 logger.info(f'{end_time}预测目标数据为空,跳过')
# update_y = update_y[update_y['ds'] <= end_time] return None
# logger.info(f'要更新y的信息{update_y}')
# # try:
# for row in update_y.itertuples(index=False):
# try:
# row_dict = row._asdict()
# yy = df[df['ds'] == row_dict['ds']]['y'].values[0]
# LOW = df[df['ds'] == row_dict['ds']]['Brentzdj'].values[0]
# HIGH = df[df['ds'] == row_dict['ds']]['Brentzgj'].values[0]
# sqlitedb.update_data(
# 'accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'")
# except:
# logger.info(f'更新accuracy表的y值失败{row_dict}')
# # except Exception as e:
# # logger.info(f'更新accuracy表的y值失败{e}')
# # 判断当前日期是不是周一 # 将最新真实值保存到数据库
# is_weekday = datetime.datetime.now().weekday() == 0 if not sqlitedb.check_table_exists('trueandpredict'):
# if is_weekday: first_row.to_sql('trueandpredict', sqlitedb.connection, index=False)
# logger.info('今天是周一,更新预测模型') else:
# # 计算最近60天预测残差最低的模型名称 for row in first_row.itertuples(index=False):
# model_results = sqlitedb.select_data( row_dict = row._asdict()
# 'trueandpredict', order_by="ds DESC", limit="60") config.logger.info(f'要保存的真实值:{row_dict}')
# # 删除空值率为90%以上的列 # 判断ds是否为字符串类型,如果不是则转换为字符串类型
# if len(model_results) > 10: if isinstance(row_dict['ds'], (pd.Timestamp, datetime.datetime)):
# model_results = model_results.dropna( row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
# thresh=len(model_results)*0.1, axis=1) elif not isinstance(row_dict['ds'], str):
# # 删除空行 try:
# model_results = model_results.dropna() row_dict['ds'] = pd.to_datetime(
# modelnames = model_results.columns.to_list()[2:-1] row_dict['ds']).strftime('%Y-%m-%d')
# for col in model_results[modelnames].select_dtypes(include=['object']).columns: except:
# model_results[col] = model_results[col].astype(np.float32) logger.warning(f"无法解析的时间格式: {row_dict['ds']}")
# # 计算每个预测值与真实值之间的偏差率 # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
# for model in modelnames: # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S')
# model_results[f'{model}_abs_error_rate'] = abs( check_query = sqlitedb.select_data(
# model_results['y'] - model_results[model]) / model_results['y'] 'trueandpredict', where_condition=f"ds = '{row.ds}'")
# # 获取每行对应的最小偏差率值 if len(check_query) > 0:
# min_abs_error_rate_values = model_results.apply( set_clause = ", ".join(
# lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1) [f"{key} = '{value}'" for key, value in row_dict.items()])
# # 获取每行对应的最小偏差率值对应的列名 sqlitedb.update_data(
# min_abs_error_rate_column_name = model_results.apply( 'trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'")
# lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1) continue
# # 将列名索引转换为列名 sqlitedb.insert_data('trueandpredict', tuple(
# min_abs_error_rate_column_name = min_abs_error_rate_column_name.map( row_dict.values()), columns=row_dict.keys())
# lambda x: x.split('_')[0])
# # 取出现次数最多的模型名称
# most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
# logger.info(f"最近60天预测残差最低的模型名称{most_common_model}")
# # 保存结果到数据库
# if not sqlitedb.check_table_exists('most_model'):
# sqlitedb.create_table(
# 'most_model', columns="ds datetime, most_common_model TEXT")
# sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime(
# '%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
# try: # 更新accuracy表的y值
# if is_weekday: if not sqlitedb.check_table_exists('accuracy'):
# # if True: pass
# logger.info('今天是周一,发送特征预警') else:
# # 上传预警信息到数据库 update_y = sqlitedb.select_data(
# warning_data_df = df_zhibiaoliebiao.copy() 'accuracy', where_condition="y is null")
# warning_data_df = warning_data_df[warning_data_df['停更周期'] > 3][[ if len(update_y) > 0:
# '指标名称', '指标id', '频度', '更新周期', '指标来源', '最后更新时间', '停更周期']] logger.info('更新accuracy表的y值')
# # 重命名列名 # 找到update_y 中ds且df中的y的行
# warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY', update_y = update_y[update_y['ds'] <= end_time]
# '更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'}) logger.info(f'要更新y的信息{update_y}')
# from sqlalchemy import create_engine # try:
# import urllib for row in update_y.itertuples(index=False):
# global password try:
# if '@' in password: row_dict = row._asdict()
# password = urllib.parse.quote_plus(password) yy = df[df['ds'] == row_dict['ds']]['y'].values[0]
LOW = df[df['ds'] == row_dict['ds']]['Brentzdj'].values[0]
HIGH = df[df['ds'] == row_dict['ds']]['Brentzgj'].values[0]
sqlitedb.update_data(
'accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'")
except:
logger.info(f'更新accuracy表的y值失败{row_dict}')
# except Exception as e:
# logger.info(f'更新accuracy表的y值失败{e}')
# engine = create_engine( # 判断当前日期是不是周一
# f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}') is_weekday = datetime.datetime.now().weekday() == 0
# warning_data_df['WARNING_DATE'] = datetime.date.today().strftime( if is_weekday:
# "%Y-%m-%d %H:%M:%S") logger.info('今天是周一,更新预测模型')
# warning_data_df['TENANT_CODE'] = 'T0004' # 计算最近60天预测残差最低的模型名称
# # 插入数据之前查询表数据然后新增id列 model_results = sqlitedb.select_data(
# existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine) 'trueandpredict', order_by="ds DESC", limit="60")
# if not existing_data.empty: # 删除空值率为90%以上的列
# max_id = existing_data['ID'].astype(int).max() if len(model_results) > 10:
# warning_data_df['ID'] = range( model_results = model_results.dropna(
# max_id + 1, max_id + 1 + len(warning_data_df)) thresh=len(model_results)*0.1, axis=1)
# else: # 删除空行
# warning_data_df['ID'] = range(1, 1 + len(warning_data_df)) model_results = model_results.dropna()
# warning_data_df.to_sql( modelnames = model_results.columns.to_list()[2:-1]
# table_name, con=engine, if_exists='append', index=False) for col in model_results[modelnames].select_dtypes(include=['object']).columns:
# if is_update_warning_data: model_results[col] = model_results[col].astype(np.float32)
# upload_warning_info(len(warning_data_df)) # 计算每个预测值与真实值之间的偏差率
# except: for model in modelnames:
# logger.info('上传预警信息到数据库失败') model_results[f'{model}_abs_error_rate'] = abs(
model_results['y'] - model_results[model]) / model_results['y']
# 获取每行对应的最小偏差率值
min_abs_error_rate_values = model_results.apply(
lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)
# 获取每行对应的最小偏差率值对应的列名
min_abs_error_rate_column_name = model_results.apply(
lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1)
# 将列名索引转换为列名
min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(
lambda x: x.split('_')[0])
# 取出现次数最多的模型名称
most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
logger.info(f"最近60天预测残差最低的模型名称{most_common_model}")
# 保存结果到数据库
if not sqlitedb.check_table_exists('most_model'):
sqlitedb.create_table(
'most_model', columns="ds datetime, most_common_model TEXT")
sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime(
'%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
# if is_corr: try:
# df = corr_feature(df=df) if is_weekday:
# if True:
logger.info('今天是周一,发送特征预警')
# 上传预警信息到数据库
warning_data_df = df_zhibiaoliebiao.copy()
warning_data_df = warning_data_df[warning_data_df['停更周期'] > 3][[
'指标名称', '指标id', '频度', '更新周期', '指标来源', '最后更新时间', '停更周期']]
# 重命名列名
warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY',
'更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'})
from sqlalchemy import create_engine
import urllib
global password
if '@' in password:
password = urllib.parse.quote_plus(password)
# df1 = df.copy() # 备份一下后面特征筛选完之后加入ds y 列用 engine = create_engine(
# logger.info(f"开始训练模型...") f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}')
# row, col = df.shape warning_data_df['WARNING_DATE'] = datetime.date.today().strftime(
"%Y-%m-%d %H:%M:%S")
warning_data_df['TENANT_CODE'] = 'T0004'
# 插入数据之前查询表数据然后新增id列
existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine)
if not existing_data.empty:
max_id = existing_data['ID'].astype(int).max()
warning_data_df['ID'] = range(
max_id + 1, max_id + 1 + len(warning_data_df))
else:
warning_data_df['ID'] = range(1, 1 + len(warning_data_df))
warning_data_df.to_sql(
table_name, con=engine, if_exists='append', index=False)
if is_update_warning_data:
upload_warning_info(len(warning_data_df))
except:
logger.info('上传预警信息到数据库失败')
# now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') if is_corr:
# ex_Model(df, df = corr_feature(df=df)
# horizon=global_config['horizon'],
# input_size=global_config['input_size'],
# train_steps=global_config['train_steps'],
# val_check_steps=global_config['val_check_steps'],
# early_stop_patience_steps=global_config['early_stop_patience_steps'],
# is_debug=global_config['is_debug'],
# dataset=global_config['dataset'],
# is_train=global_config['is_train'],
# is_fivemodels=global_config['is_fivemodels'],
# val_size=global_config['val_size'],
# test_size=global_config['test_size'],
# settings=global_config['settings'],
# now=now,
# etadata=global_config['etadata'],
# modelsindex=global_config['modelsindex'],
# data=data,
# is_eta=global_config['is_eta'],
# end_time=global_config['end_time'],
# )
# logger.info('模型训练完成') df1 = df.copy() # 备份一下后面特征筛选完之后加入ds y 列用
logger.info(f"开始训练模型...")
row, col = df.shape
now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
ex_Model(df,
horizon=global_config['horizon'],
input_size=global_config['input_size'],
train_steps=global_config['train_steps'],
val_check_steps=global_config['val_check_steps'],
early_stop_patience_steps=global_config['early_stop_patience_steps'],
is_debug=global_config['is_debug'],
dataset=global_config['dataset'],
is_train=global_config['is_train'],
is_fivemodels=global_config['is_fivemodels'],
val_size=global_config['val_size'],
test_size=global_config['test_size'],
settings=global_config['settings'],
now=now,
etadata=global_config['etadata'],
modelsindex=global_config['modelsindex'],
data=data,
is_eta=global_config['is_eta'],
end_time=global_config['end_time'],
)
logger.info('模型训练完成')
logger.info('训练数据绘图ing') logger.info('训练数据绘图ing')
model_results3 = model_losss(sqlitedb, end_time=end_time) model_results3 = model_losss(sqlitedb, end_time=end_time)
@ -403,15 +421,15 @@ def predict_main():
# 模型报告 # 模型报告
logger.info('制作报告ing') logger.info('制作报告ing')
title = f'{settings}--{end_time}-预测报告' # 报告标题 title = f'{settings}--{end_time}-预测报告' # 报告标题
reportname = f'石油焦铝用大模型日度预测--{end_time}.pdf' # 报告文件名 reportname = f'Brent原油大模型日度预测--{end_time}.pdf' # 报告文件名
reportname = reportname.replace(':', '-') # 替换冒号 reportname = reportname.replace(':', '-') # 替换冒号
shiyoujiao_lvyong_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time, brent_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time,
reportname=reportname, sqlitedb=sqlitedb), reportname=reportname, sqlitedb=sqlitedb),
logger.info('制作报告end') logger.info('制作报告end')
logger.info('模型训练完成') logger.info('模型训练完成')
# push_market_value() push_market_value()
# # LSTM 单变量模型 # # LSTM 单变量模型
# ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset) # ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset)