聚烯烃图片报告预测保留整数,相关性保留两位小数
This commit is contained in:
		
							parent
							
								
									ff7b9bf235
								
							
						
					
					
						commit
						fc05840cf8
					
				| @ -835,7 +835,7 @@ def convert_df_to_pydantic_pp(df_predict, model_id_name_dict, global_config): | |||||||
|         if c not in ['ds', 'created_dt']: |         if c not in ['ds', 'created_dt']: | ||||||
|             data['model_id'] = reverse_model_id_name_dict[c] |             data['model_id'] = reverse_model_id_name_dict[c] | ||||||
|             data['predicted_price'] = Decimal( |             data['predicted_price'] = Decimal( | ||||||
|                 round(df_predict[c].values[0], 2)) |                 int(df_predict[c].values[0])) | ||||||
|             result = PpPredictionResult(**data) |             result = PpPredictionResult(**data) | ||||||
|             results.append(result) |             results.append(result) | ||||||
|     return results |     return results | ||||||
| @ -959,7 +959,7 @@ def find_best_models(date='', global_config=None): | |||||||
|             ciridate = last_trading_day_str |             ciridate = last_trading_day_str | ||||||
|             global_config['logger'].info(f'计算预测{last_trading_day}的次日{last_trading_day}最佳模型') |             global_config['logger'].info(f'计算预测{last_trading_day}的次日{last_trading_day}最佳模型') | ||||||
|             global_config['logger'].info( |             global_config['logger'].info( | ||||||
|                 f'{date}真实价格:{true_price[true_price["ds"] == date]["y"].values[0]}') |                 f'{date}真实价格:{true_price[true_price["ds"] == last_trading_day_str]["y"].values[0]}') | ||||||
|             price = df[['data_date', wd, 'model_id']] |             price = df[['data_date', wd, 'model_id']] | ||||||
|             price = price[(price['data_date'] == ciridate) |             price = price[(price['data_date'] == ciridate) | ||||||
|                           | (price['data_date'] == date)] |                           | (price['data_date'] == date)] | ||||||
| @ -1098,7 +1098,7 @@ def plot_pp_predict_result(y_hat, global_config,wd='yuedu'): | |||||||
|         y = pd.read_csv('juxitingdataset/指标数据.csv')[['ds', 'y']][-30:] |         y = pd.read_csv('juxitingdataset/指标数据.csv')[['ds', 'y']][-30:] | ||||||
|         xgx_df = pd.read_csv('juxitingdataset/相关系数.csv') |         xgx_df = pd.read_csv('juxitingdataset/相关系数.csv') | ||||||
|     xgx_df = xgx_df.rename(columns={xgx_df.columns[0]: '指标', xgx_df.columns[1]: '系数'}) |     xgx_df = xgx_df.rename(columns={xgx_df.columns[0]: '指标', xgx_df.columns[1]: '系数'}) | ||||||
|     top_10_correlations = xgx_df.sort_values(by='系数',ascending=False)[1:11] |     top_10_correlations = xgx_df.sort_values(by='系数', ascending=False)[1:11].round().astype({'系数': int}) | ||||||
|     y['ds'] = pd.to_datetime(y['ds']) |     y['ds'] = pd.to_datetime(y['ds']) | ||||||
|     y = y[y['ds'] < y_hat['ds'].iloc[0]] |     y = y[y['ds'] < y_hat['ds'].iloc[0]] | ||||||
| 
 | 
 | ||||||
| @ -1138,7 +1138,7 @@ def plot_pp_predict_result(y_hat, global_config,wd='yuedu'): | |||||||
|                           'next_march_price': '次三月', 'next_april_price': '次四月', |                           'next_march_price': '次三月', 'next_april_price': '次四月', | ||||||
|                           }, inplace=True) |                           }, inplace=True) | ||||||
|     columns = y_hat.columns.tolist() |     columns = y_hat.columns.tolist() | ||||||
|     data = y_hat.values.tolist() |     data = [round(num) for num in y_hat.values.ravel().tolist()] | ||||||
| 
 | 
 | ||||||
|     # 将日期转换为字符串格式 |     # 将日期转换为字符串格式 | ||||||
|     for row in data: |     for row in data: | ||||||
|  | |||||||
| @ -557,7 +557,7 @@ if __name__ == '__main__': | |||||||
|     #     except Exception as e: |     #     except Exception as e: | ||||||
|     #         logger.info(f'预测失败:{e}') |     #         logger.info(f'预测失败:{e}') | ||||||
|     #         continue |     #         continue | ||||||
|     global_config['end_time'] = '2025-08-04' |     # global_config['end_time'] = '2025-08-05' | ||||||
|     predict_main() |     predict_main() | ||||||
| 
 | 
 | ||||||
|     # global_config['end_time'] = '2025-08-01' |     # global_config['end_time'] = '2025-08-01' | ||||||
|  | |||||||
| @ -530,12 +530,13 @@ if __name__ == '__main__': | |||||||
|     #         logger.info(f'预测失败:{e}') |     #         logger.info(f'预测失败:{e}') | ||||||
|     #         continue |     #         continue | ||||||
| 
 | 
 | ||||||
|     global_config['end_time'] = '2025-08-04' |     # global_config['end_time'] = '2025-08-05' | ||||||
|     predict_main() |     # predict_main() | ||||||
|     # push_market_value() |     # push_market_value() | ||||||
|  |     # sql_inset_predict(global_config) | ||||||
| 
 | 
 | ||||||
|     #  图片报告 |     #  图片报告 | ||||||
|     # global_config['end_time'] = '2025-07-31' |     global_config['end_time'] = '2025-08-05' | ||||||
|     # logger.info('图片报告ing') |     logger.info('图片报告ing') | ||||||
|     # pp_bdwd_png(global_config=global_config) |     pp_bdwd_png(global_config=global_config) | ||||||
|     # logger.info('图片报告end') |     logger.info('图片报告end') | ||||||
|  | |||||||
| @ -513,7 +513,7 @@ if __name__ == '__main__': | |||||||
|     #         continue |     #         continue | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
|     global_config['end_time'] = '2025-08-04' |     global_config['end_time'] = '2025-08-05' | ||||||
|     predict_main() |     predict_main() | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
|  | |||||||
| @ -396,7 +396,7 @@ def ex_Model_Juxiting(df, horizon, input_size, train_steps, val_check_steps, ear | |||||||
| 
 | 
 | ||||||
|         # VanillaTransformer(h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps, scaler_type='standard', ),  //报错了 |         # VanillaTransformer(h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps, scaler_type='standard', ),  //报错了 | ||||||
|         # Autoformer(h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps, scaler_type='standard', ), //报错了 |         # Autoformer(h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps, scaler_type='standard', ), //报错了 | ||||||
|         # NBEATS(h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps, scaler_type='standard', ), |         NBEATS(h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps, scaler_type='standard', ), | ||||||
|         # NBEATSx (h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps, scaler_type='standard',activation='ReLU', ),   //报错 |         # NBEATSx (h=horizon, input_size=input_size, max_steps=train_steps, val_check_steps=val_check_steps, scaler_type='standard',activation='ReLU', ),   //报错 | ||||||
|         # HINT(h=horizon), |         # HINT(h=horizon), | ||||||
| 
 | 
 | ||||||
|  | |||||||
		Loading…
	
		Reference in New Issue
	
	Block a user