格式化代码

This commit is contained in:
workpc 2025-03-05 09:47:02 +08:00
parent e49ab6dd02
commit fe1e99b075
4 changed files with 2006 additions and 1641 deletions

View File

@ -2,7 +2,7 @@ import logging
import os
import logging.handlers
import datetime
from lib.tools import MySQLDB,SQLiteHandler
from lib.tools import MySQLDB, SQLiteHandler
# eta 接口token
@ -19,57 +19,56 @@ edbdatapushurl = 'http://10.189.2.78:8108/v1/edb/push'
edbdeleteurl = 'http://10.189.2.78:8108/v1/edb/business/edb/del'
edbbusinessurl = 'http://10.189.2.78:8108/v1/edb/business/data/del'
edbcodelist = ['CO1 Comdty', 'ovx index', 'C2404194834', 'C2404199738', 'dxy curncy', 'C2403128043', 'C2403150124',
'DOESCRUD Index', 'WTRBM1 EEGC Index', 'FVHCM1 INDEX', 'doedtprd index', 'CFFDQMMN INDEX',
'C2403083739', 'C2404167878', 'C2403250571', 'lmcads03 lme comdty', 'GC1 COMB Comdty',
'C2404171822','C2404167855',
# 'W000825','W000826','G.IPE', # 美国汽柴油
# 'S5131019','ID00135604','FSGAM1 Index','S5120408','ID00136724', # 新加坡汽柴油
]
'DOESCRUD Index', 'WTRBM1 EEGC Index', 'FVHCM1 INDEX', 'doedtprd index', 'CFFDQMMN INDEX',
'C2403083739', 'C2404167878', 'C2403250571', 'lmcads03 lme comdty', 'GC1 COMB Comdty',
'C2404171822', 'C2404167855',
# 'W000825','W000826','G.IPE', # 美国汽柴油
# 'S5131019','ID00135604','FSGAM1 Index','S5120408','ID00136724', # 新加坡汽柴油
]
# 临时写死用指定的列,与上面的edbcode对应后面更改
edbnamelist = [
'ds','y',
'Brent c1-c6','Brent c1-c3','Brent-WTI','美国商业原油库存',
'DFL','美国汽油裂解价差','ovx index','dxy curncy','lmcads03 lme comdty',
'C2403128043','C2403150124','FVHCM1 INDEX','doedtprd index','CFFDQMMN INDEX',
'C2403083739','C2404167878',
'GC1 COMB Comdty','C2404167855',
'ds', 'y',
'Brent c1-c6', 'Brent c1-c3', 'Brent-WTI', '美国商业原油库存',
'DFL', '美国汽油裂解价差', 'ovx index', 'dxy curncy', 'lmcads03 lme comdty',
'C2403128043', 'C2403150124', 'FVHCM1 INDEX', 'doedtprd index', 'CFFDQMMN INDEX',
'C2403083739', 'C2404167878',
'GC1 COMB Comdty', 'C2404167855',
# 'A汽油价格','W000826','ICE柴油价格',
# '新加坡(含硫0.05%) 柴油现货价','柴油10ppm国际市场FOB中间价新加坡','Bloomberg Commodity Fair Value Singapore Mogas 92 Swap Month 1','97#汽油FOB新加坡现货价','无铅汽油97#国际市场FOB中间价新加坡'
]
]
# eta自有数据指标编码
modelsindex = {
'NHITS': 'SELF0000001',
'Informer':'SELF0000057',
'LSTM':'SELF0000058',
'iTransformer':'SELF0000059',
'TSMixer':'SELF0000060',
'TSMixerx':'SELF0000061',
'PatchTST':'SELF0000062',
'RNN':'SELF0000063',
'GRU':'SELF0000064',
'TCN':'SELF0000065',
'BiTCN':'SELF0000066',
'DilatedRNN':'SELF0000067',
'MLP':'SELF0000068',
'DLinear':'SELF0000069',
'NLinear':'SELF0000070',
'TFT':'SELF0000071',
'FEDformer':'SELF0000072',
'StemGNN':'SELF0000073',
'MLPMultivariate':'SELF0000074',
'TiDE':'SELF0000075',
'DeepNPTS':'SELF0000076'
}
'NHITS': 'SELF0000001',
'Informer': 'SELF0000057',
'LSTM': 'SELF0000058',
'iTransformer': 'SELF0000059',
'TSMixer': 'SELF0000060',
'TSMixerx': 'SELF0000061',
'PatchTST': 'SELF0000062',
'RNN': 'SELF0000063',
'GRU': 'SELF0000064',
'TCN': 'SELF0000065',
'BiTCN': 'SELF0000066',
'DilatedRNN': 'SELF0000067',
'MLP': 'SELF0000068',
'DLinear': 'SELF0000069',
'NLinear': 'SELF0000070',
'TFT': 'SELF0000071',
'FEDformer': 'SELF0000072',
'StemGNN': 'SELF0000073',
'MLPMultivariate': 'SELF0000074',
'TiDE': 'SELF0000075',
'DeepNPTS': 'SELF0000076'
}
# eta 上传预测结果的请求体,后面发起请求的时候更改 model datalist 数据
data = {
"IndexCode": "",
"IndexName": "价格预测模型",
"Unit": "",
"IndexCode": "",
"IndexName": "价格预测模型",
"Unit": "",
"Frequency": "日度",
"SourceName": f"价格预测",
"Remark": 'ddd',
@ -79,19 +78,18 @@ data = {
"Value": 333444
}
]
}
}
# eta 分类
# level3才可以获取到数据所以需要人工把能源化工下所有的level3级都找到
# url = 'http://10.189.2.78:8108/v1/edb/list?ClassifyId=1214'
#ParentId ":1160, 能源化工
# ClassifyId ":1214,原油
#ParentId ":1214,",就是原油下所有的数据。
# url = 'http://10.189.2.78:8108/v1/edb/list?ClassifyId=1214'
# ParentId ":1160, 能源化工
# ClassifyId ":1214,原油
# ParentId ":1214,",就是原油下所有的数据。
ClassifyId = 1214
############################################################################################################### 变量定义--测试环境
# 变量定义--测试环境
server_host = '192.168.100.53'
login_pushreport_url = f"http://{server_host}:8080/jingbo-dev/api/server/login"
@ -103,7 +101,7 @@ login_data = {
"data": {
"account": "api_test",
# "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456
"password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", # 123456
"password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", # 123456
"tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
"terminal": "API"
},
@ -112,39 +110,39 @@ login_data = {
}
upload_data = {
"funcModule":'研究报告信息',
"funcOperation":'上传原油价格预测报告',
"data":{
"ownerAccount":'arui', #报告所属用户账号
"reportType":'OIL_PRICE_FORECAST', # 报告类型固定为OIL_PRICE_FORECAST
"fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', #文件名称
"fileBase64": '' ,#文件内容base64
"categoryNo":'yyjgycbg', # 研究报告分类编码
"smartBusinessClassCode":'YCJGYCBG', #分析报告分类编码
"reportEmployeeCode":"E40116", # 报告人
"reportDeptCode" :"D0044" ,# 报告部门
"productGroupCode":"RAW_MATERIAL" # 商品分类
}
"funcModule": '研究报告信息',
"funcOperation": '上传原油价格预测报告',
"data": {
"ownerAccount": 'arui', # 报告所属用户账号
"reportType": 'OIL_PRICE_FORECAST', # 报告类型固定为OIL_PRICE_FORECAST
"fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', # 文件名称
"fileBase64": '', # 文件内容base64
"categoryNo": 'yyjgycbg', # 研究报告分类编码
"smartBusinessClassCode": 'YCJGYCBG', # 分析报告分类编码
"reportEmployeeCode": "E40116", # 报告人
"reportDeptCode": "D0044", # 报告部门
"productGroupCode": "RAW_MATERIAL" # 商品分类
}
}
warning_data = {
"funcModule":'原油特征停更预警',
"funcOperation":'原油特征停更预警',
"data":{
'WARNING_TYPE_NAME':'特征数据停更预警',
'WARNING_CONTENT':'',
'WARNING_DATE':''
}
"funcModule": '原油特征停更预警',
"funcOperation": '原油特征停更预警',
"data": {
'WARNING_TYPE_NAME': '特征数据停更预警',
'WARNING_CONTENT': '',
'WARNING_DATE': ''
}
}
query_data_list_item_nos_data = {
"funcModule": "数据项",
"funcOperation": "查询",
"funcModule": "数据项",
"funcOperation": "查询",
"data": {
"dateStart":"20200101",
"dateEnd":"20241231",
"dataItemNoList":["Brentzdj","Brentzgj"] # 数据项编码,代表 brent最低价和最高价
"dateStart": "20200101",
"dateEnd": "20241231",
"dataItemNoList": ["Brentzdj", "Brentzgj"] # 数据项编码,代表 brent最低价和最高价
}
}
@ -152,96 +150,96 @@ query_data_list_item_nos_data = {
# 北京环境数据库
host = '192.168.101.27'
port = 3306
dbusername ='root'
dbusername = 'root'
password = '123456'
dbname = 'jingbo_test'
table_name = 'v_tbl_crude_oil_warning'
### 开关
is_train = False # 是否训练
is_debug = False # 是否调试
is_eta = False # 是否使用eta接口
is_market = True # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
is_timefurture = True # 是否使用时间特征
is_fivemodels = False # 是否使用之前保存的最佳的5个模型
is_edbcode = False # 特征使用edbcoding列表中的
is_edbnamelist = False # 自定义特征对应上面的edbnamelist
is_update_eta = False # 预测结果上传到eta
is_update_report = False # 是否上传报告
is_update_warning_data = False # 是否上传预警数据
is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 0 为不删除0.6 表示删除相关性小于0.6的特征
is_del_tow_month = True # 是否删除两个月不更新的特征
# 开关
is_train = False # 是否训练
is_debug = False # 是否调试
is_eta = False # 是否使用eta接口
is_market = True # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
is_timefurture = True # 是否使用时间特征
is_fivemodels = False # 是否使用之前保存的最佳的5个模型
is_edbcode = False # 特征使用edbcoding列表中的
is_edbnamelist = False # 自定义特征对应上面的edbnamelist
is_update_eta = False # 预测结果上传到eta
is_update_report = False # 是否上传报告
is_update_warning_data = False # 是否上传预警数据
is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 0 为不删除0.6 表示删除相关性小于0.6的特征
is_del_tow_month = True # 是否删除两个月不更新的特征
# 连接到数据库
db_mysql = MySQLDB(host=host, user=dbusername, password=password, database=dbname)
db_mysql = MySQLDB(host=host, user=dbusername,
password=password, database=dbname)
db_mysql.connect()
print("数据库连接成功",host,dbname,dbusername)
print("数据库连接成功", host, dbname, dbusername)
# 数据截取日期
start_year = 2015 # 数据开始年份
end_time = '' # 数据截取日期
start_year = 2015 # 数据开始年份
end_time = '' # 数据截取日期
freq = 'WW' # 时间频率,"D": 天 "W": 周"M": 月"Q": 季度"A": 年 "H": 小时 "T": 分钟 "S": 秒 "B": 工作日 "WW" 自定义周
delweekenday = True if freq == 'B' else False # 是否删除周末数据
is_corr = False # 特征是否参与滞后领先提升相关系数
add_kdj = False # 是否添加kdj指标
delweekenday = True if freq == 'B' else False # 是否删除周末数据
is_corr = False # 特征是否参与滞后领先提升相关系数
add_kdj = False # 是否添加kdj指标
if add_kdj and is_edbnamelist:
edbnamelist = edbnamelist+['K','D','J']
edbnamelist = edbnamelist+['K', 'D', 'J']
### 模型参数
y = 'Brent连1合约价格' # 原油指标数据的目标变量 Brent连1合约价格 Brent活跃合约
horizon =2 # 预测的步长
# 模型参数
y = 'Brent连1合约价格' # 原油指标数据的目标变量 Brent连1合约价格 Brent活跃合约
horizon = 2 # 预测的步长
input_size = 12 # 输入序列长度
train_steps = 50 if is_debug else 1000 # 训练步数,用来限定epoch次数
train_steps = 50 if is_debug else 1000 # 训练步数,用来限定epoch次数
val_check_steps = 30 # 评估频率
early_stop_patience_steps = 5 # 早停的耐心步数
early_stop_patience_steps = 5 # 早停的耐心步数
# --- 交叉验证用的参数
test_size = 100 # 测试集大小定义100后面使用的时候重新赋值
val_size = test_size # 验证集大小,同测试集大小
val_size = test_size # 验证集大小,同测试集大小
### 特征筛选用到的参数
k = 100 # 特征筛选数量如果是0或者值比特征数量大代表全部特征
corr_threshold = 0.6 # 相关性大于0.6的特征
rote = 0.06 # 绘图上下界阈值
# 特征筛选用到的参数
k = 100 # 特征筛选数量如果是0或者值比特征数量大代表全部特征
corr_threshold = 0.6 # 相关性大于0.6的特征
rote = 0.06 # 绘图上下界阈值
### 计算准确率
weight_dict = [0.4,0.15,0.1,0.1,0.25] # 权重
# 计算准确率
weight_dict = [0.4, 0.15, 0.1, 0.1, 0.25] # 权重
### 文件
data_set = '原油指标数据.xlsx' # 数据集文件
dataset = 'yuanyouzhoududataset' # 数据集文件夹
# 文件
data_set = '原油指标数据.xlsx' # 数据集文件
dataset = 'yuanyouzhoududataset' # 数据集文件夹
# 数据库名称
db_name = os.path.join(dataset,'jbsh_yuanyou_zhoudu.db')
db_name = os.path.join(dataset, 'jbsh_yuanyou_zhoudu.db')
sqlitedb = SQLiteHandler(db_name)
sqlitedb.connect()
settings = f'{input_size}-{horizon}-{train_steps}--{k}-{data_set}-{y}'
# 获取日期时间
# now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') # 获取当前日期时间
now = datetime.datetime.now().strftime('%Y-%m-%d') # 获取当前日期时间
reportname = f'Brent原油大模型周度预测--{end_time}.pdf' # 报告文件名
reportname = reportname.replace(':', '-') # 替换冒号
now = datetime.datetime.now().strftime('%Y-%m-%d') # 获取当前日期时间
reportname = f'Brent原油大模型周度预测--{end_time}.pdf' # 报告文件名
reportname = reportname.replace(':', '-') # 替换冒号
if end_time == '':
end_time = now
### 邮件配置
username='1321340118@qq.com'
passwd='wgczgyhtyyyyjghi'
# 邮件配置
username = '1321340118@qq.com'
passwd = 'wgczgyhtyyyyjghi'
# recv=['liurui_test@163.com','52585119@qq.com']
recv=['liurui_test@163.com','jin.wang@chambroad.com']
recv = ['liurui_test@163.com', 'jin.wang@chambroad.com']
# recv=['liurui_test@163.com']
title='reportname'
content='brent价格预测报告请看附件'
file=os.path.join(dataset,'reportname')
title = 'reportname'
content = 'brent价格预测报告请看附件'
file = os.path.join(dataset, 'reportname')
# file=os.path.join(dataset,'14-7-50--100-原油指标数据.xlsx-Brent连1合约价格--20240731175936-预测报告.pdf')
ssl=True
ssl = True
### 日志配置
# 日志配置
# 创建日志目录(如果不存在)
log_dir = 'logs'
@ -253,8 +251,10 @@ logger = logging.getLogger('my_logger')
logger.setLevel(logging.INFO)
# 配置文件处理器,将日志记录到文件
file_handler = logging.handlers.RotatingFileHandler(os.path.join(log_dir, 'pricepredict.log'), maxBytes=1024 * 1024, backupCount=5)
file_handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
file_handler = logging.handlers.RotatingFileHandler(os.path.join(
log_dir, 'pricepredict.log'), maxBytes=1024 * 1024, backupCount=5)
file_handler.setFormatter(logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
# 配置控制台处理器,将日志打印到控制台
console_handler = logging.StreamHandler()
@ -265,4 +265,3 @@ logger.addHandler(file_handler)
logger.addHandler(console_handler)
# logger.info('当前配置:'+settings)

File diff suppressed because it is too large Load Diff

View File

@ -1,14 +1,15 @@
# 读取配置
from lib.dataread import *
from lib.tools import SendMail,exception_logger
from models.nerulforcastmodels import ex_Model,model_losss,model_losss_juxiting,brent_export_pdf,tansuanli_export_pdf,pp_export_pdf,model_losss_juxiting
# from config_jingbo_zhoudu import *
from lib.tools import SendMail, exception_logger
from models.nerulforcastmodels import ex_Model, model_losss, model_losss_juxiting, brent_export_pdf, tansuanli_export_pdf, pp_export_pdf, model_losss_juxiting
import glob
import torch
torch.set_float32_matmul_precision("high")
def predict_main():
"""
主预测函数用于从 ETA 获取数据处理数据训练模型并进行预测
@ -72,7 +73,8 @@ def predict_main():
edbdeleteurl=edbdeleteurl,
edbbusinessurl=edbbusinessurl,
)
df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_yuanyou_data(data_set=data_set, dataset=dataset) # 原始数据,未处理
df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_yuanyou_data(
data_set=data_set, dataset=dataset) # 原始数据,未处理
if is_market:
logger.info('从市场信息平台获取数据...')
@ -83,26 +85,26 @@ def predict_main():
df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju)
else:
logger.info('从市场信息平台获取数据')
df_zhibiaoshuju = get_market_data(end_time,df_zhibiaoshuju)
df_zhibiaoshuju = get_market_data(
end_time, df_zhibiaoshuju)
except :
except:
logger.info('最高最低价拼接失败')
# 保存到xlsx文件的sheet表
with pd.ExcelWriter(os.path.join(dataset,data_set)) as file:
with pd.ExcelWriter(os.path.join(dataset, data_set)) as file:
df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False)
df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False)
# 数据处理
df = datachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=y, dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture,
end_time=end_time)
end_time=end_time)
else:
# 读取数据
logger.info('读取本地数据:' + os.path.join(dataset, data_set))
df,df_zhibiaoliebiao = getdata(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj,
is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理
df, df_zhibiaoliebiao = getdata(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj,
is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理
# 更改预测列名称
df.rename(columns={y: 'y'}, inplace=True)
@ -126,31 +128,37 @@ def predict_main():
row_dict = row._asdict()
# row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
# row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S')
check_query = sqlitedb.select_data('trueandpredict', where_condition=f"ds = '{row.ds}'")
check_query = sqlitedb.select_data(
'trueandpredict', where_condition=f"ds = '{row.ds}'")
if len(check_query) > 0:
set_clause = ", ".join([f"{key} = '{value}'" for key, value in row_dict.items()])
sqlitedb.update_data('trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'")
set_clause = ", ".join(
[f"{key} = '{value}'" for key, value in row_dict.items()])
sqlitedb.update_data(
'trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'")
continue
sqlitedb.insert_data('trueandpredict', tuple(row_dict.values()), columns=row_dict.keys())
sqlitedb.insert_data('trueandpredict', tuple(
row_dict.values()), columns=row_dict.keys())
# 更新accuracy表的y值
if not sqlitedb.check_table_exists('accuracy'):
pass
else:
update_y = sqlitedb.select_data('accuracy',where_condition="y is null")
update_y = sqlitedb.select_data(
'accuracy', where_condition="y is null")
if len(update_y) > 0:
logger.info('更新accuracy表的y值')
# 找到update_y 中ds且df中的y的行
update_y = update_y[update_y['ds']<=end_time]
update_y = update_y[update_y['ds'] <= end_time]
logger.info(f'要更新y的信息{update_y}')
# try:
for row in update_y.itertuples(index=False):
try:
row_dict = row._asdict()
yy = df[df['ds']==row_dict['ds']]['y'].values[0]
LOW = df[df['ds']==row_dict['ds']]['Brentzdj'].values[0]
HIGH = df[df['ds']==row_dict['ds']]['Brentzgj'].values[0]
sqlitedb.update_data('accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'")
yy = df[df['ds'] == row_dict['ds']]['y'].values[0]
LOW = df[df['ds'] == row_dict['ds']]['Brentzdj'].values[0]
HIGH = df[df['ds'] == row_dict['ds']]['Brentzgj'].values[0]
sqlitedb.update_data(
'accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'")
except:
logger.info(f'更新accuracy表的y值失败{row_dict}')
# except Exception as e:
@ -162,10 +170,12 @@ def predict_main():
if is_weekday:
logger.info('今天是周一,更新预测模型')
# 计算最近60天预测残差最低的模型名称
model_results = sqlitedb.select_data('trueandpredict', order_by="ds DESC", limit="60")
model_results = sqlitedb.select_data(
'trueandpredict', order_by="ds DESC", limit="60")
# 删除空值率为90%以上的列
if len(model_results) > 10:
model_results = model_results.dropna(thresh=len(model_results)*0.1,axis=1)
model_results = model_results.dropna(
thresh=len(model_results)*0.1, axis=1)
# 删除空行
model_results = model_results.dropna()
modelnames = model_results.columns.to_list()[2:-1]
@ -173,47 +183,59 @@ def predict_main():
model_results[col] = model_results[col].astype(np.float32)
# 计算每个预测值与真实值之间的偏差率
for model in modelnames:
model_results[f'{model}_abs_error_rate'] = abs(model_results['y'] - model_results[model]) / model_results['y']
model_results[f'{model}_abs_error_rate'] = abs(
model_results['y'] - model_results[model]) / model_results['y']
# 获取每行对应的最小偏差率值
min_abs_error_rate_values = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)
min_abs_error_rate_values = model_results.apply(
lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)
# 获取每行对应的最小偏差率值对应的列名
min_abs_error_rate_column_name = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1)
min_abs_error_rate_column_name = model_results.apply(
lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1)
# 将列名索引转换为列名
min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(lambda x: x.split('_')[0])
min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(
lambda x: x.split('_')[0])
# 取出现次数最多的模型名称
most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
logger.info(f"最近60天预测残差最低的模型名称{most_common_model}")
# 保存结果到数据库
if not sqlitedb.check_table_exists('most_model'):
sqlitedb.create_table('most_model', columns="ds datetime, most_common_model TEXT")
sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
sqlitedb.create_table(
'most_model', columns="ds datetime, most_common_model TEXT")
sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime(
'%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
try:
if is_weekday:
# if True:
# if True:
logger.info('今天是周一,发送特征预警')
# 上传预警信息到数据库
warning_data_df = df_zhibiaoliebiao.copy()
warning_data_df = warning_data_df[warning_data_df['停更周期']> 3 ][['指标名称', '指标id', '频度','更新周期','指标来源','最后更新时间','停更周期']]
warning_data_df = warning_data_df[warning_data_df['停更周期'] > 3][[
'指标名称', '指标id', '频度', '更新周期', '指标来源', '最后更新时间', '停更周期']]
# 重命名列名
warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY', '更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'})
warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY',
'更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'})
from sqlalchemy import create_engine
import urllib
global password
if '@' in password:
password = urllib.parse.quote_plus(password)
engine = create_engine(f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}')
warning_data_df['WARNING_DATE'] = datetime.date.today().strftime("%Y-%m-%d %H:%M:%S")
warning_data_df['TENANT_CODE'] = 'T0004'
engine = create_engine(
f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}')
warning_data_df['WARNING_DATE'] = datetime.date.today().strftime(
"%Y-%m-%d %H:%M:%S")
warning_data_df['TENANT_CODE'] = 'T0004'
# 插入数据之前查询表数据然后新增id列
existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine)
if not existing_data.empty:
max_id = existing_data['ID'].astype(int).max()
warning_data_df['ID'] = range(max_id + 1, max_id + 1 + len(warning_data_df))
warning_data_df['ID'] = range(
max_id + 1, max_id + 1 + len(warning_data_df))
else:
warning_data_df['ID'] = range(1, 1 + len(warning_data_df))
warning_data_df.to_sql(table_name, con=engine, if_exists='append', index=False)
warning_data_df.to_sql(
table_name, con=engine, if_exists='append', index=False)
if is_update_warning_data:
upload_warning_info(len(warning_data_df))
except:
@ -248,20 +270,19 @@ def predict_main():
end_time=end_time,
)
logger.info('模型训练完成')
logger.info('训练数据绘图ing')
model_results3 = model_losss(sqlitedb,end_time=end_time)
model_results3 = model_losss(sqlitedb, end_time=end_time)
logger.info('训练数据绘图end')
# # 模型报告
logger.info('制作报告ing')
title = f'{settings}--{end_time}-预测报告' # 报告标题
reportname = f'Brent原油大模型周度预测--{end_time}.pdf' # 报告文件名
reportname = reportname.replace(':', '-') # 替换冒号
brent_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,time=end_time,
reportname=reportname,sqlitedb=sqlitedb),
title = f'{settings}--{end_time}-预测报告' # 报告标题
reportname = f'Brent原油大模型周度预测--{end_time}.pdf' # 报告文件名
reportname = reportname.replace(':', '-') # 替换冒号
brent_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time,
reportname=reportname, sqlitedb=sqlitedb),
logger.info('制作报告end')
logger.info('模型训练完成')

File diff suppressed because it is too large Load Diff