格式化代码
This commit is contained in:
parent
e49ab6dd02
commit
fe1e99b075
@ -2,7 +2,7 @@ import logging
|
||||
import os
|
||||
import logging.handlers
|
||||
import datetime
|
||||
from lib.tools import MySQLDB,SQLiteHandler
|
||||
from lib.tools import MySQLDB, SQLiteHandler
|
||||
|
||||
|
||||
# eta 接口token
|
||||
@ -19,57 +19,56 @@ edbdatapushurl = 'http://10.189.2.78:8108/v1/edb/push'
|
||||
edbdeleteurl = 'http://10.189.2.78:8108/v1/edb/business/edb/del'
|
||||
edbbusinessurl = 'http://10.189.2.78:8108/v1/edb/business/data/del'
|
||||
edbcodelist = ['CO1 Comdty', 'ovx index', 'C2404194834', 'C2404199738', 'dxy curncy', 'C2403128043', 'C2403150124',
|
||||
'DOESCRUD Index', 'WTRBM1 EEGC Index', 'FVHCM1 INDEX', 'doedtprd index', 'CFFDQMMN INDEX',
|
||||
'C2403083739', 'C2404167878', 'C2403250571', 'lmcads03 lme comdty', 'GC1 COMB Comdty',
|
||||
'C2404171822','C2404167855',
|
||||
# 'W000825','W000826','G.IPE', # 美国汽柴油
|
||||
# 'S5131019','ID00135604','FSGAM1 Index','S5120408','ID00136724', # 新加坡汽柴油
|
||||
]
|
||||
'DOESCRUD Index', 'WTRBM1 EEGC Index', 'FVHCM1 INDEX', 'doedtprd index', 'CFFDQMMN INDEX',
|
||||
'C2403083739', 'C2404167878', 'C2403250571', 'lmcads03 lme comdty', 'GC1 COMB Comdty',
|
||||
'C2404171822', 'C2404167855',
|
||||
# 'W000825','W000826','G.IPE', # 美国汽柴油
|
||||
# 'S5131019','ID00135604','FSGAM1 Index','S5120408','ID00136724', # 新加坡汽柴油
|
||||
]
|
||||
|
||||
# 临时写死用指定的列,与上面的edbcode对应,后面更改
|
||||
edbnamelist = [
|
||||
'ds','y',
|
||||
'Brent c1-c6','Brent c1-c3','Brent-WTI','美国商业原油库存',
|
||||
'DFL','美国汽油裂解价差','ovx index','dxy curncy','lmcads03 lme comdty',
|
||||
'C2403128043','C2403150124','FVHCM1 INDEX','doedtprd index','CFFDQMMN INDEX',
|
||||
'C2403083739','C2404167878',
|
||||
'GC1 COMB Comdty','C2404167855',
|
||||
'ds', 'y',
|
||||
'Brent c1-c6', 'Brent c1-c3', 'Brent-WTI', '美国商业原油库存',
|
||||
'DFL', '美国汽油裂解价差', 'ovx index', 'dxy curncy', 'lmcads03 lme comdty',
|
||||
'C2403128043', 'C2403150124', 'FVHCM1 INDEX', 'doedtprd index', 'CFFDQMMN INDEX',
|
||||
'C2403083739', 'C2404167878',
|
||||
'GC1 COMB Comdty', 'C2404167855',
|
||||
# 'A汽油价格','W000826','ICE柴油价格',
|
||||
# '新加坡(含硫0.05%) 柴油现货价','柴油:10ppm:国际市场:FOB中间价:新加坡(日)','Bloomberg Commodity Fair Value Singapore Mogas 92 Swap Month 1','97#汽油FOB新加坡现货价','无铅汽油:97#:国际市场:FOB中间价:新加坡(日)'
|
||||
]
|
||||
|
||||
]
|
||||
|
||||
|
||||
# eta自有数据指标编码
|
||||
modelsindex = {
|
||||
'NHITS': 'SELF0000001',
|
||||
'Informer':'SELF0000057',
|
||||
'LSTM':'SELF0000058',
|
||||
'iTransformer':'SELF0000059',
|
||||
'TSMixer':'SELF0000060',
|
||||
'TSMixerx':'SELF0000061',
|
||||
'PatchTST':'SELF0000062',
|
||||
'RNN':'SELF0000063',
|
||||
'GRU':'SELF0000064',
|
||||
'TCN':'SELF0000065',
|
||||
'BiTCN':'SELF0000066',
|
||||
'DilatedRNN':'SELF0000067',
|
||||
'MLP':'SELF0000068',
|
||||
'DLinear':'SELF0000069',
|
||||
'NLinear':'SELF0000070',
|
||||
'TFT':'SELF0000071',
|
||||
'FEDformer':'SELF0000072',
|
||||
'StemGNN':'SELF0000073',
|
||||
'MLPMultivariate':'SELF0000074',
|
||||
'TiDE':'SELF0000075',
|
||||
'DeepNPTS':'SELF0000076'
|
||||
}
|
||||
'NHITS': 'SELF0000001',
|
||||
'Informer': 'SELF0000057',
|
||||
'LSTM': 'SELF0000058',
|
||||
'iTransformer': 'SELF0000059',
|
||||
'TSMixer': 'SELF0000060',
|
||||
'TSMixerx': 'SELF0000061',
|
||||
'PatchTST': 'SELF0000062',
|
||||
'RNN': 'SELF0000063',
|
||||
'GRU': 'SELF0000064',
|
||||
'TCN': 'SELF0000065',
|
||||
'BiTCN': 'SELF0000066',
|
||||
'DilatedRNN': 'SELF0000067',
|
||||
'MLP': 'SELF0000068',
|
||||
'DLinear': 'SELF0000069',
|
||||
'NLinear': 'SELF0000070',
|
||||
'TFT': 'SELF0000071',
|
||||
'FEDformer': 'SELF0000072',
|
||||
'StemGNN': 'SELF0000073',
|
||||
'MLPMultivariate': 'SELF0000074',
|
||||
'TiDE': 'SELF0000075',
|
||||
'DeepNPTS': 'SELF0000076'
|
||||
}
|
||||
|
||||
# eta 上传预测结果的请求体,后面发起请求的时候更改 model datalist 数据
|
||||
data = {
|
||||
"IndexCode": "",
|
||||
"IndexName": "价格预测模型",
|
||||
"Unit": "无",
|
||||
"IndexCode": "",
|
||||
"IndexName": "价格预测模型",
|
||||
"Unit": "无",
|
||||
"Frequency": "日度",
|
||||
"SourceName": f"价格预测",
|
||||
"Remark": 'ddd',
|
||||
@ -79,19 +78,18 @@ data = {
|
||||
"Value": 333444
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
# eta 分类
|
||||
# level:3才可以获取到数据,所以需要人工把能源化工下所有的level3级都找到
|
||||
# url = 'http://10.189.2.78:8108/v1/edb/list?ClassifyId=1214'
|
||||
#ParentId ":1160, 能源化工
|
||||
# ClassifyId ":1214,原油
|
||||
#ParentId ":1214,",就是原油下所有的数据。
|
||||
# url = 'http://10.189.2.78:8108/v1/edb/list?ClassifyId=1214'
|
||||
# ParentId ":1160, 能源化工
|
||||
# ClassifyId ":1214,原油
|
||||
# ParentId ":1214,",就是原油下所有的数据。
|
||||
ClassifyId = 1214
|
||||
|
||||
|
||||
|
||||
############################################################################################################### 变量定义--测试环境
|
||||
# 变量定义--测试环境
|
||||
server_host = '192.168.100.53'
|
||||
|
||||
login_pushreport_url = f"http://{server_host}:8080/jingbo-dev/api/server/login"
|
||||
@ -103,7 +101,7 @@ login_data = {
|
||||
"data": {
|
||||
"account": "api_test",
|
||||
# "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456
|
||||
"password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", # 123456
|
||||
"password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", # 123456
|
||||
"tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
|
||||
"terminal": "API"
|
||||
},
|
||||
@ -112,39 +110,39 @@ login_data = {
|
||||
}
|
||||
|
||||
upload_data = {
|
||||
"funcModule":'研究报告信息',
|
||||
"funcOperation":'上传原油价格预测报告',
|
||||
"data":{
|
||||
"ownerAccount":'arui', #报告所属用户账号
|
||||
"reportType":'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST
|
||||
"fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', #文件名称
|
||||
"fileBase64": '' ,#文件内容base64
|
||||
"categoryNo":'yyjgycbg', # 研究报告分类编码
|
||||
"smartBusinessClassCode":'YCJGYCBG', #分析报告分类编码
|
||||
"reportEmployeeCode":"E40116", # 报告人
|
||||
"reportDeptCode" :"D0044" ,# 报告部门
|
||||
"productGroupCode":"RAW_MATERIAL" # 商品分类
|
||||
}
|
||||
"funcModule": '研究报告信息',
|
||||
"funcOperation": '上传原油价格预测报告',
|
||||
"data": {
|
||||
"ownerAccount": 'arui', # 报告所属用户账号
|
||||
"reportType": 'OIL_PRICE_FORECAST', # 报告类型,固定为OIL_PRICE_FORECAST
|
||||
"fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', # 文件名称
|
||||
"fileBase64": '', # 文件内容base64
|
||||
"categoryNo": 'yyjgycbg', # 研究报告分类编码
|
||||
"smartBusinessClassCode": 'YCJGYCBG', # 分析报告分类编码
|
||||
"reportEmployeeCode": "E40116", # 报告人
|
||||
"reportDeptCode": "D0044", # 报告部门
|
||||
"productGroupCode": "RAW_MATERIAL" # 商品分类
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
warning_data = {
|
||||
"funcModule":'原油特征停更预警',
|
||||
"funcOperation":'原油特征停更预警',
|
||||
"data":{
|
||||
'WARNING_TYPE_NAME':'特征数据停更预警',
|
||||
'WARNING_CONTENT':'',
|
||||
'WARNING_DATE':''
|
||||
}
|
||||
"funcModule": '原油特征停更预警',
|
||||
"funcOperation": '原油特征停更预警',
|
||||
"data": {
|
||||
'WARNING_TYPE_NAME': '特征数据停更预警',
|
||||
'WARNING_CONTENT': '',
|
||||
'WARNING_DATE': ''
|
||||
}
|
||||
}
|
||||
|
||||
query_data_list_item_nos_data = {
|
||||
"funcModule": "数据项",
|
||||
"funcOperation": "查询",
|
||||
"funcModule": "数据项",
|
||||
"funcOperation": "查询",
|
||||
"data": {
|
||||
"dateStart":"20200101",
|
||||
"dateEnd":"20241231",
|
||||
"dataItemNoList":["Brentzdj","Brentzgj"] # 数据项编码,代表 brent最低价和最高价
|
||||
"dateStart": "20200101",
|
||||
"dateEnd": "20241231",
|
||||
"dataItemNoList": ["Brentzdj", "Brentzgj"] # 数据项编码,代表 brent最低价和最高价
|
||||
}
|
||||
}
|
||||
|
||||
@ -152,96 +150,96 @@ query_data_list_item_nos_data = {
|
||||
# 北京环境数据库
|
||||
host = '192.168.101.27'
|
||||
port = 3306
|
||||
dbusername ='root'
|
||||
dbusername = 'root'
|
||||
password = '123456'
|
||||
dbname = 'jingbo_test'
|
||||
table_name = 'v_tbl_crude_oil_warning'
|
||||
|
||||
|
||||
### 开关
|
||||
is_train = False # 是否训练
|
||||
is_debug = False # 是否调试
|
||||
is_eta = False # 是否使用eta接口
|
||||
is_market = True # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
|
||||
is_timefurture = True # 是否使用时间特征
|
||||
is_fivemodels = False # 是否使用之前保存的最佳的5个模型
|
||||
is_edbcode = False # 特征使用edbcoding列表中的
|
||||
is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
|
||||
is_update_eta = False # 预测结果上传到eta
|
||||
is_update_report = False # 是否上传报告
|
||||
is_update_warning_data = False # 是否上传预警数据
|
||||
is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
|
||||
is_del_tow_month = True # 是否删除两个月不更新的特征
|
||||
|
||||
# 开关
|
||||
is_train = False # 是否训练
|
||||
is_debug = False # 是否调试
|
||||
is_eta = False # 是否使用eta接口
|
||||
is_market = True # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
|
||||
is_timefurture = True # 是否使用时间特征
|
||||
is_fivemodels = False # 是否使用之前保存的最佳的5个模型
|
||||
is_edbcode = False # 特征使用edbcoding列表中的
|
||||
is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
|
||||
is_update_eta = False # 预测结果上传到eta
|
||||
is_update_report = False # 是否上传报告
|
||||
is_update_warning_data = False # 是否上传预警数据
|
||||
is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 ,0 为不删除,0.6 表示删除相关性小于0.6的特征
|
||||
is_del_tow_month = True # 是否删除两个月不更新的特征
|
||||
|
||||
|
||||
# 连接到数据库
|
||||
db_mysql = MySQLDB(host=host, user=dbusername, password=password, database=dbname)
|
||||
db_mysql = MySQLDB(host=host, user=dbusername,
|
||||
password=password, database=dbname)
|
||||
db_mysql.connect()
|
||||
print("数据库连接成功",host,dbname,dbusername)
|
||||
print("数据库连接成功", host, dbname, dbusername)
|
||||
|
||||
|
||||
# 数据截取日期
|
||||
start_year = 2015 # 数据开始年份
|
||||
end_time = '' # 数据截取日期
|
||||
start_year = 2015 # 数据开始年份
|
||||
end_time = '' # 数据截取日期
|
||||
freq = 'WW' # 时间频率,"D": 天 "W": 周"M": 月"Q": 季度"A": 年 "H": 小时 "T": 分钟 "S": 秒 "B": 工作日 "WW" 自定义周
|
||||
delweekenday = True if freq == 'B' else False # 是否删除周末数据
|
||||
is_corr = False # 特征是否参与滞后领先提升相关系数
|
||||
add_kdj = False # 是否添加kdj指标
|
||||
delweekenday = True if freq == 'B' else False # 是否删除周末数据
|
||||
is_corr = False # 特征是否参与滞后领先提升相关系数
|
||||
add_kdj = False # 是否添加kdj指标
|
||||
if add_kdj and is_edbnamelist:
|
||||
edbnamelist = edbnamelist+['K','D','J']
|
||||
edbnamelist = edbnamelist+['K', 'D', 'J']
|
||||
|
||||
### 模型参数
|
||||
y = 'Brent连1合约价格' # 原油指标数据的目标变量 Brent连1合约价格 Brent活跃合约
|
||||
horizon =2 # 预测的步长
|
||||
# 模型参数
|
||||
y = 'Brent连1合约价格' # 原油指标数据的目标变量 Brent连1合约价格 Brent活跃合约
|
||||
horizon = 2 # 预测的步长
|
||||
input_size = 12 # 输入序列长度
|
||||
train_steps = 50 if is_debug else 1000 # 训练步数,用来限定epoch次数
|
||||
train_steps = 50 if is_debug else 1000 # 训练步数,用来限定epoch次数
|
||||
val_check_steps = 30 # 评估频率
|
||||
early_stop_patience_steps = 5 # 早停的耐心步数
|
||||
early_stop_patience_steps = 5 # 早停的耐心步数
|
||||
# --- 交叉验证用的参数
|
||||
test_size = 100 # 测试集大小,定义100,后面使用的时候重新赋值
|
||||
val_size = test_size # 验证集大小,同测试集大小
|
||||
val_size = test_size # 验证集大小,同测试集大小
|
||||
|
||||
### 特征筛选用到的参数
|
||||
k = 100 # 特征筛选数量,如果是0或者值比特征数量大,代表全部特征
|
||||
corr_threshold = 0.6 # 相关性大于0.6的特征
|
||||
rote = 0.06 # 绘图上下界阈值
|
||||
# 特征筛选用到的参数
|
||||
k = 100 # 特征筛选数量,如果是0或者值比特征数量大,代表全部特征
|
||||
corr_threshold = 0.6 # 相关性大于0.6的特征
|
||||
rote = 0.06 # 绘图上下界阈值
|
||||
|
||||
### 计算准确率
|
||||
weight_dict = [0.4,0.15,0.1,0.1,0.25] # 权重
|
||||
# 计算准确率
|
||||
weight_dict = [0.4, 0.15, 0.1, 0.1, 0.25] # 权重
|
||||
|
||||
|
||||
### 文件
|
||||
data_set = '原油指标数据.xlsx' # 数据集文件
|
||||
dataset = 'yuanyouzhoududataset' # 数据集文件夹
|
||||
# 文件
|
||||
data_set = '原油指标数据.xlsx' # 数据集文件
|
||||
dataset = 'yuanyouzhoududataset' # 数据集文件夹
|
||||
|
||||
# 数据库名称
|
||||
db_name = os.path.join(dataset,'jbsh_yuanyou_zhoudu.db')
|
||||
db_name = os.path.join(dataset, 'jbsh_yuanyou_zhoudu.db')
|
||||
sqlitedb = SQLiteHandler(db_name)
|
||||
sqlitedb.connect()
|
||||
|
||||
settings = f'{input_size}-{horizon}-{train_steps}--{k}-{data_set}-{y}'
|
||||
# 获取日期时间
|
||||
# now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') # 获取当前日期时间
|
||||
now = datetime.datetime.now().strftime('%Y-%m-%d') # 获取当前日期时间
|
||||
reportname = f'Brent原油大模型周度预测--{end_time}.pdf' # 报告文件名
|
||||
reportname = reportname.replace(':', '-') # 替换冒号
|
||||
now = datetime.datetime.now().strftime('%Y-%m-%d') # 获取当前日期时间
|
||||
reportname = f'Brent原油大模型周度预测--{end_time}.pdf' # 报告文件名
|
||||
reportname = reportname.replace(':', '-') # 替换冒号
|
||||
if end_time == '':
|
||||
end_time = now
|
||||
### 邮件配置
|
||||
username='1321340118@qq.com'
|
||||
passwd='wgczgyhtyyyyjghi'
|
||||
# 邮件配置
|
||||
username = '1321340118@qq.com'
|
||||
passwd = 'wgczgyhtyyyyjghi'
|
||||
# recv=['liurui_test@163.com','52585119@qq.com']
|
||||
recv=['liurui_test@163.com','jin.wang@chambroad.com']
|
||||
recv = ['liurui_test@163.com', 'jin.wang@chambroad.com']
|
||||
# recv=['liurui_test@163.com']
|
||||
title='reportname'
|
||||
content='brent价格预测报告请看附件'
|
||||
file=os.path.join(dataset,'reportname')
|
||||
title = 'reportname'
|
||||
content = 'brent价格预测报告请看附件'
|
||||
file = os.path.join(dataset, 'reportname')
|
||||
# file=os.path.join(dataset,'14-7-50--100-原油指标数据.xlsx-Brent连1合约价格--20240731175936-预测报告.pdf')
|
||||
ssl=True
|
||||
ssl = True
|
||||
|
||||
|
||||
### 日志配置
|
||||
# 日志配置
|
||||
|
||||
# 创建日志目录(如果不存在)
|
||||
log_dir = 'logs'
|
||||
@ -253,8 +251,10 @@ logger = logging.getLogger('my_logger')
|
||||
logger.setLevel(logging.INFO)
|
||||
|
||||
# 配置文件处理器,将日志记录到文件
|
||||
file_handler = logging.handlers.RotatingFileHandler(os.path.join(log_dir, 'pricepredict.log'), maxBytes=1024 * 1024, backupCount=5)
|
||||
file_handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
|
||||
file_handler = logging.handlers.RotatingFileHandler(os.path.join(
|
||||
log_dir, 'pricepredict.log'), maxBytes=1024 * 1024, backupCount=5)
|
||||
file_handler.setFormatter(logging.Formatter(
|
||||
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
|
||||
|
||||
# 配置控制台处理器,将日志打印到控制台
|
||||
console_handler = logging.StreamHandler()
|
||||
@ -265,4 +265,3 @@ logger.addHandler(file_handler)
|
||||
logger.addHandler(console_handler)
|
||||
|
||||
# logger.info('当前配置:'+settings)
|
||||
|
||||
|
675
lib/dataread.py
675
lib/dataread.py
File diff suppressed because it is too large
Load Diff
@ -1,14 +1,15 @@
|
||||
# 读取配置
|
||||
|
||||
from lib.dataread import *
|
||||
from lib.tools import SendMail,exception_logger
|
||||
from models.nerulforcastmodels import ex_Model,model_losss,model_losss_juxiting,brent_export_pdf,tansuanli_export_pdf,pp_export_pdf,model_losss_juxiting
|
||||
# from config_jingbo_zhoudu import *
|
||||
from lib.tools import SendMail, exception_logger
|
||||
from models.nerulforcastmodels import ex_Model, model_losss, model_losss_juxiting, brent_export_pdf, tansuanli_export_pdf, pp_export_pdf, model_losss_juxiting
|
||||
|
||||
import glob
|
||||
import torch
|
||||
torch.set_float32_matmul_precision("high")
|
||||
|
||||
|
||||
|
||||
def predict_main():
|
||||
"""
|
||||
主预测函数,用于从 ETA 获取数据、处理数据、训练模型并进行预测。
|
||||
@ -72,7 +73,8 @@ def predict_main():
|
||||
edbdeleteurl=edbdeleteurl,
|
||||
edbbusinessurl=edbbusinessurl,
|
||||
)
|
||||
df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_yuanyou_data(data_set=data_set, dataset=dataset) # 原始数据,未处理
|
||||
df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_yuanyou_data(
|
||||
data_set=data_set, dataset=dataset) # 原始数据,未处理
|
||||
|
||||
if is_market:
|
||||
logger.info('从市场信息平台获取数据...')
|
||||
@ -83,26 +85,26 @@ def predict_main():
|
||||
df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju)
|
||||
else:
|
||||
logger.info('从市场信息平台获取数据')
|
||||
df_zhibiaoshuju = get_market_data(end_time,df_zhibiaoshuju)
|
||||
df_zhibiaoshuju = get_market_data(
|
||||
end_time, df_zhibiaoshuju)
|
||||
|
||||
except :
|
||||
except:
|
||||
logger.info('最高最低价拼接失败')
|
||||
|
||||
# 保存到xlsx文件的sheet表
|
||||
with pd.ExcelWriter(os.path.join(dataset,data_set)) as file:
|
||||
with pd.ExcelWriter(os.path.join(dataset, data_set)) as file:
|
||||
df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False)
|
||||
df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False)
|
||||
|
||||
|
||||
# 数据处理
|
||||
df = datachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=y, dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture,
|
||||
end_time=end_time)
|
||||
end_time=end_time)
|
||||
|
||||
else:
|
||||
# 读取数据
|
||||
logger.info('读取本地数据:' + os.path.join(dataset, data_set))
|
||||
df,df_zhibiaoliebiao = getdata(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj,
|
||||
is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理
|
||||
df, df_zhibiaoliebiao = getdata(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj,
|
||||
is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理
|
||||
|
||||
# 更改预测列名称
|
||||
df.rename(columns={y: 'y'}, inplace=True)
|
||||
@ -126,31 +128,37 @@ def predict_main():
|
||||
row_dict = row._asdict()
|
||||
# row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
|
||||
# row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S')
|
||||
check_query = sqlitedb.select_data('trueandpredict', where_condition=f"ds = '{row.ds}'")
|
||||
check_query = sqlitedb.select_data(
|
||||
'trueandpredict', where_condition=f"ds = '{row.ds}'")
|
||||
if len(check_query) > 0:
|
||||
set_clause = ", ".join([f"{key} = '{value}'" for key, value in row_dict.items()])
|
||||
sqlitedb.update_data('trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'")
|
||||
set_clause = ", ".join(
|
||||
[f"{key} = '{value}'" for key, value in row_dict.items()])
|
||||
sqlitedb.update_data(
|
||||
'trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'")
|
||||
continue
|
||||
sqlitedb.insert_data('trueandpredict', tuple(row_dict.values()), columns=row_dict.keys())
|
||||
sqlitedb.insert_data('trueandpredict', tuple(
|
||||
row_dict.values()), columns=row_dict.keys())
|
||||
|
||||
# 更新accuracy表的y值
|
||||
if not sqlitedb.check_table_exists('accuracy'):
|
||||
pass
|
||||
else:
|
||||
update_y = sqlitedb.select_data('accuracy',where_condition="y is null")
|
||||
update_y = sqlitedb.select_data(
|
||||
'accuracy', where_condition="y is null")
|
||||
if len(update_y) > 0:
|
||||
logger.info('更新accuracy表的y值')
|
||||
# 找到update_y 中ds且df中的y的行
|
||||
update_y = update_y[update_y['ds']<=end_time]
|
||||
update_y = update_y[update_y['ds'] <= end_time]
|
||||
logger.info(f'要更新y的信息:{update_y}')
|
||||
# try:
|
||||
for row in update_y.itertuples(index=False):
|
||||
try:
|
||||
row_dict = row._asdict()
|
||||
yy = df[df['ds']==row_dict['ds']]['y'].values[0]
|
||||
LOW = df[df['ds']==row_dict['ds']]['Brentzdj'].values[0]
|
||||
HIGH = df[df['ds']==row_dict['ds']]['Brentzgj'].values[0]
|
||||
sqlitedb.update_data('accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'")
|
||||
yy = df[df['ds'] == row_dict['ds']]['y'].values[0]
|
||||
LOW = df[df['ds'] == row_dict['ds']]['Brentzdj'].values[0]
|
||||
HIGH = df[df['ds'] == row_dict['ds']]['Brentzgj'].values[0]
|
||||
sqlitedb.update_data(
|
||||
'accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'")
|
||||
except:
|
||||
logger.info(f'更新accuracy表的y值失败:{row_dict}')
|
||||
# except Exception as e:
|
||||
@ -162,10 +170,12 @@ def predict_main():
|
||||
if is_weekday:
|
||||
logger.info('今天是周一,更新预测模型')
|
||||
# 计算最近60天预测残差最低的模型名称
|
||||
model_results = sqlitedb.select_data('trueandpredict', order_by="ds DESC", limit="60")
|
||||
model_results = sqlitedb.select_data(
|
||||
'trueandpredict', order_by="ds DESC", limit="60")
|
||||
# 删除空值率为90%以上的列
|
||||
if len(model_results) > 10:
|
||||
model_results = model_results.dropna(thresh=len(model_results)*0.1,axis=1)
|
||||
model_results = model_results.dropna(
|
||||
thresh=len(model_results)*0.1, axis=1)
|
||||
# 删除空行
|
||||
model_results = model_results.dropna()
|
||||
modelnames = model_results.columns.to_list()[2:-1]
|
||||
@ -173,47 +183,59 @@ def predict_main():
|
||||
model_results[col] = model_results[col].astype(np.float32)
|
||||
# 计算每个预测值与真实值之间的偏差率
|
||||
for model in modelnames:
|
||||
model_results[f'{model}_abs_error_rate'] = abs(model_results['y'] - model_results[model]) / model_results['y']
|
||||
model_results[f'{model}_abs_error_rate'] = abs(
|
||||
model_results['y'] - model_results[model]) / model_results['y']
|
||||
# 获取每行对应的最小偏差率值
|
||||
min_abs_error_rate_values = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)
|
||||
min_abs_error_rate_values = model_results.apply(
|
||||
lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)
|
||||
# 获取每行对应的最小偏差率值对应的列名
|
||||
min_abs_error_rate_column_name = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1)
|
||||
min_abs_error_rate_column_name = model_results.apply(
|
||||
lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1)
|
||||
# 将列名索引转换为列名
|
||||
min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(lambda x: x.split('_')[0])
|
||||
min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(
|
||||
lambda x: x.split('_')[0])
|
||||
# 取出现次数最多的模型名称
|
||||
most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
|
||||
logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}")
|
||||
# 保存结果到数据库
|
||||
if not sqlitedb.check_table_exists('most_model'):
|
||||
sqlitedb.create_table('most_model', columns="ds datetime, most_common_model TEXT")
|
||||
sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
|
||||
sqlitedb.create_table(
|
||||
'most_model', columns="ds datetime, most_common_model TEXT")
|
||||
sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime(
|
||||
'%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
|
||||
|
||||
try:
|
||||
if is_weekday:
|
||||
# if True:
|
||||
# if True:
|
||||
logger.info('今天是周一,发送特征预警')
|
||||
# 上传预警信息到数据库
|
||||
warning_data_df = df_zhibiaoliebiao.copy()
|
||||
warning_data_df = warning_data_df[warning_data_df['停更周期']> 3 ][['指标名称', '指标id', '频度','更新周期','指标来源','最后更新时间','停更周期']]
|
||||
warning_data_df = warning_data_df[warning_data_df['停更周期'] > 3][[
|
||||
'指标名称', '指标id', '频度', '更新周期', '指标来源', '最后更新时间', '停更周期']]
|
||||
# 重命名列名
|
||||
warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY', '更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'})
|
||||
warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY',
|
||||
'更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'})
|
||||
from sqlalchemy import create_engine
|
||||
import urllib
|
||||
global password
|
||||
if '@' in password:
|
||||
password = urllib.parse.quote_plus(password)
|
||||
|
||||
engine = create_engine(f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}')
|
||||
warning_data_df['WARNING_DATE'] = datetime.date.today().strftime("%Y-%m-%d %H:%M:%S")
|
||||
warning_data_df['TENANT_CODE'] = 'T0004'
|
||||
engine = create_engine(
|
||||
f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}')
|
||||
warning_data_df['WARNING_DATE'] = datetime.date.today().strftime(
|
||||
"%Y-%m-%d %H:%M:%S")
|
||||
warning_data_df['TENANT_CODE'] = 'T0004'
|
||||
# 插入数据之前查询表数据然后新增id列
|
||||
existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine)
|
||||
if not existing_data.empty:
|
||||
max_id = existing_data['ID'].astype(int).max()
|
||||
warning_data_df['ID'] = range(max_id + 1, max_id + 1 + len(warning_data_df))
|
||||
warning_data_df['ID'] = range(
|
||||
max_id + 1, max_id + 1 + len(warning_data_df))
|
||||
else:
|
||||
warning_data_df['ID'] = range(1, 1 + len(warning_data_df))
|
||||
warning_data_df.to_sql(table_name, con=engine, if_exists='append', index=False)
|
||||
warning_data_df.to_sql(
|
||||
table_name, con=engine, if_exists='append', index=False)
|
||||
if is_update_warning_data:
|
||||
upload_warning_info(len(warning_data_df))
|
||||
except:
|
||||
@ -248,20 +270,19 @@ def predict_main():
|
||||
end_time=end_time,
|
||||
)
|
||||
|
||||
|
||||
logger.info('模型训练完成')
|
||||
|
||||
logger.info('训练数据绘图ing')
|
||||
model_results3 = model_losss(sqlitedb,end_time=end_time)
|
||||
model_results3 = model_losss(sqlitedb, end_time=end_time)
|
||||
logger.info('训练数据绘图end')
|
||||
|
||||
# # 模型报告
|
||||
logger.info('制作报告ing')
|
||||
title = f'{settings}--{end_time}-预测报告' # 报告标题
|
||||
reportname = f'Brent原油大模型周度预测--{end_time}.pdf' # 报告文件名
|
||||
reportname = reportname.replace(':', '-') # 替换冒号
|
||||
brent_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,time=end_time,
|
||||
reportname=reportname,sqlitedb=sqlitedb),
|
||||
title = f'{settings}--{end_time}-预测报告' # 报告标题
|
||||
reportname = f'Brent原油大模型周度预测--{end_time}.pdf' # 报告文件名
|
||||
reportname = reportname.replace(':', '-') # 替换冒号
|
||||
brent_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time,
|
||||
reportname=reportname, sqlitedb=sqlitedb),
|
||||
|
||||
logger.info('制作报告end')
|
||||
logger.info('模型训练完成')
|
||||
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user