聚烯烃月度模型执行更新
This commit is contained in:
		
							parent
							
								
									3b51565262
								
							
						
					
					
						commit
						ff7b9bf235
					
				| @ -557,8 +557,7 @@ if __name__ == '__main__': | ||||
|     #     except Exception as e: | ||||
|     #         logger.info(f'预测失败:{e}') | ||||
|     #         continue | ||||
|     global_config['end_time'] = '2025-08-01' | ||||
|     global_config['db_mysql'].connect() | ||||
|     global_config['end_time'] = '2025-08-04' | ||||
|     predict_main() | ||||
| 
 | ||||
|     # global_config['end_time'] = '2025-08-01' | ||||
|  | ||||
| @ -3,7 +3,7 @@ | ||||
| from lib.dataread import * | ||||
| from config_juxiting_yuedu import * | ||||
| from lib.tools import SendMail, convert_df_to_pydantic_pp, exception_logger, find_best_models, get_modelsname | ||||
| from models.nerulforcastmodels import ex_Model, model_losss_juxiting, pp_bdwd_png, pp_export_pdf | ||||
| from models.nerulforcastmodels import ex_Model_Juxiting, model_losss_juxiting, pp_bdwd_png, pp_export_pdf | ||||
| import datetime | ||||
| import torch | ||||
| torch.set_float32_matmul_precision("high") | ||||
| @ -285,203 +285,203 @@ def predict_main(): | ||||
|     返回: | ||||
|         None | ||||
|     """ | ||||
|     # end_time = global_config['end_time'] | ||||
|     # signature = BinanceAPI(APPID, SECRET) | ||||
|     # etadata = EtaReader(signature=signature, | ||||
|     #                     classifylisturl=global_config['classifylisturl'], | ||||
|     #                     classifyidlisturl=global_config['classifyidlisturl'], | ||||
|     #                     edbcodedataurl=global_config['edbcodedataurl'], | ||||
|     #                     edbcodelist=global_config['edbcodelist'], | ||||
|     #                     edbdatapushurl=global_config['edbdatapushurl'], | ||||
|     #                     edbdeleteurl=global_config['edbdeleteurl'], | ||||
|     #                     edbbusinessurl=global_config['edbbusinessurl'], | ||||
|     #                     classifyId=global_config['ClassifyId'], | ||||
|     #                     ) | ||||
|     # # 获取数据 | ||||
|     # if is_eta: | ||||
|     #     logger.info('从eta获取数据...') | ||||
|     end_time = global_config['end_time'] | ||||
|     signature = BinanceAPI(APPID, SECRET) | ||||
|     etadata = EtaReader(signature=signature, | ||||
|                         classifylisturl=global_config['classifylisturl'], | ||||
|                         classifyidlisturl=global_config['classifyidlisturl'], | ||||
|                         edbcodedataurl=global_config['edbcodedataurl'], | ||||
|                         edbcodelist=global_config['edbcodelist'], | ||||
|                         edbdatapushurl=global_config['edbdatapushurl'], | ||||
|                         edbdeleteurl=global_config['edbdeleteurl'], | ||||
|                         edbbusinessurl=global_config['edbbusinessurl'], | ||||
|                         classifyId=global_config['ClassifyId'], | ||||
|                         ) | ||||
|     # 获取数据 | ||||
|     if is_eta: | ||||
|         logger.info('从eta获取数据...') | ||||
| 
 | ||||
|     #     df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_pp_data( | ||||
|     #         data_set=data_set, dataset=dataset)  # 原始数据,未处理 | ||||
|         df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_pp_data( | ||||
|             data_set=data_set, dataset=dataset)  # 原始数据,未处理 | ||||
| 
 | ||||
|     #     if is_market: | ||||
|     #         logger.info('从市场信息平台获取数据...') | ||||
|     #         try: | ||||
|     #             # 如果是测试环境,最高价最低价取excel文档 | ||||
|     #             if server_host == '192.168.100.53': | ||||
|     #                 logger.info('从excel文档获取最高价最低价') | ||||
|     #                 df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju) | ||||
|     #             else: | ||||
|     #                 logger.info('从市场信息平台获取数据') | ||||
|     #                 df_zhibiaoshuju = get_market_data( | ||||
|     #                     end_time, df_zhibiaoshuju) | ||||
|         if is_market: | ||||
|             logger.info('从市场信息平台获取数据...') | ||||
|             try: | ||||
|                 # 如果是测试环境,最高价最低价取excel文档 | ||||
|                 if server_host == '192.168.100.53': | ||||
|                     logger.info('从excel文档获取最高价最低价') | ||||
|                     df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju) | ||||
|                 else: | ||||
|                     logger.info('从市场信息平台获取数据') | ||||
|                     df_zhibiaoshuju = get_market_data( | ||||
|                         end_time, df_zhibiaoshuju) | ||||
| 
 | ||||
|     #         except: | ||||
|     #             logger.info('最高最低价拼接失败') | ||||
|             except: | ||||
|                 logger.info('最高最低价拼接失败') | ||||
| 
 | ||||
|     #     # 保存到xlsx文件的sheet表 | ||||
|     #     with pd.ExcelWriter(os.path.join(dataset, data_set)) as file: | ||||
|     #         df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False) | ||||
|     #         df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False) | ||||
|         # 保存到xlsx文件的sheet表 | ||||
|         with pd.ExcelWriter(os.path.join(dataset, data_set)) as file: | ||||
|             df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False) | ||||
|             df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False) | ||||
| 
 | ||||
|     #     # 数据处理 | ||||
|     #     df = datachuli_juxiting(df_zhibiaoshuju, df_zhibiaoliebiao, y=global_config['y'], dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture, | ||||
|     #                             end_time=end_time) | ||||
|         # 数据处理 | ||||
|         df = datachuli_juxiting(df_zhibiaoshuju, df_zhibiaoliebiao, y=global_config['y'], dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture, | ||||
|                                 end_time=end_time) | ||||
| 
 | ||||
|     # else: | ||||
|     #     # 读取数据 | ||||
|     #     logger.info('读取本地数据:' + os.path.join(dataset, data_set)) | ||||
|     #     df, df_zhibiaoliebiao = getdata_zhoudu_juxiting(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj, | ||||
|     #                                                     is_timefurture=is_timefurture, end_time=end_time)  # 原始数据,未处理 | ||||
|     else: | ||||
|         # 读取数据 | ||||
|         logger.info('读取本地数据:' + os.path.join(dataset, data_set)) | ||||
|         df, df_zhibiaoliebiao = getdata_zhoudu_juxiting(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj, | ||||
|                                                         is_timefurture=is_timefurture, end_time=end_time)  # 原始数据,未处理 | ||||
| 
 | ||||
|     # # 更改预测列名称 | ||||
|     # df.rename(columns={y: 'y'}, inplace=True) | ||||
|     # 更改预测列名称 | ||||
|     df.rename(columns={y: 'y'}, inplace=True) | ||||
| 
 | ||||
|     # if is_edbnamelist: | ||||
|     #     df = df[edbnamelist] | ||||
|     # df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False) | ||||
|     # # 保存最新日期的y值到数据库 | ||||
|     # # 取第一行数据存储到数据库中 | ||||
|     # first_row = df[['ds', 'y']].tail(1) | ||||
|     # # 判断y的类型是否为float | ||||
|     # if not isinstance(first_row['y'].values[0], float): | ||||
|     #     logger.info(f'{end_time}预测目标数据为空,跳过') | ||||
|     #     return None | ||||
|     if is_edbnamelist: | ||||
|         df = df[edbnamelist] | ||||
|     df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False) | ||||
|     # 保存最新日期的y值到数据库 | ||||
|     # 取第一行数据存储到数据库中 | ||||
|     first_row = df[['ds', 'y']].tail(1) | ||||
|     # 判断y的类型是否为float | ||||
|     if not isinstance(first_row['y'].values[0], float): | ||||
|         logger.info(f'{end_time}预测目标数据为空,跳过') | ||||
|         return None | ||||
| 
 | ||||
|     # # 将最新真实值保存到数据库 | ||||
|     # if not sqlitedb.check_table_exists('trueandpredict'): | ||||
|     #     first_row.to_sql('trueandpredict', sqlitedb.connection, index=False) | ||||
|     # else: | ||||
|     #     for row in first_row.itertuples(index=False): | ||||
|     #         row_dict = row._asdict() | ||||
|     #         config.logger.info(f'要保存的真实值:{row_dict}') | ||||
|     #         # 判断ds是否为字符串类型,如果不是则转换为字符串类型 | ||||
|     #         if isinstance(row_dict['ds'], (pd.Timestamp, datetime.datetime)): | ||||
|     # 将最新真实值保存到数据库 | ||||
|     if not sqlitedb.check_table_exists('trueandpredict'): | ||||
|         first_row.to_sql('trueandpredict', sqlitedb.connection, index=False) | ||||
|     else: | ||||
|         for row in first_row.itertuples(index=False): | ||||
|             row_dict = row._asdict() | ||||
|             config.logger.info(f'要保存的真实值:{row_dict}') | ||||
|             # 判断ds是否为字符串类型,如果不是则转换为字符串类型 | ||||
|             if isinstance(row_dict['ds'], (pd.Timestamp, datetime.datetime)): | ||||
|                 row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d') | ||||
|             elif not isinstance(row_dict['ds'], str): | ||||
|                 try: | ||||
|                     row_dict['ds'] = pd.to_datetime( | ||||
|                         row_dict['ds']).strftime('%Y-%m-%d') | ||||
|                 except: | ||||
|                     logger.warning(f"无法解析的时间格式: {row_dict['ds']}") | ||||
|             # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d') | ||||
|     #         elif not isinstance(row_dict['ds'], str): | ||||
|             # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S') | ||||
|             check_query = sqlitedb.select_data( | ||||
|                 'trueandpredict', where_condition=f"ds = '{row.ds}'") | ||||
|             if len(check_query) > 0: | ||||
|                 set_clause = ", ".join( | ||||
|                     [f"{key} = '{value}'" for key, value in row_dict.items()]) | ||||
|                 sqlitedb.update_data( | ||||
|                     'trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'") | ||||
|                 continue | ||||
|             sqlitedb.insert_data('trueandpredict', tuple( | ||||
|                 row_dict.values()), columns=row_dict.keys()) | ||||
| 
 | ||||
|     # 更新accuracy表的y值 | ||||
|     if not sqlitedb.check_table_exists('accuracy'): | ||||
|         pass | ||||
|     else: | ||||
|         update_y = sqlitedb.select_data( | ||||
|             'accuracy', where_condition="y is null") | ||||
|         if len(update_y) > 0: | ||||
|             logger.info('更新accuracy表的y值') | ||||
|             # 找到update_y 中ds且df中的y的行 | ||||
|             update_y = update_y[update_y['ds'] <= end_time] | ||||
|             logger.info(f'要更新y的信息:{update_y}') | ||||
|             # try: | ||||
|     #                 row_dict['ds'] = pd.to_datetime( | ||||
|     #                     row_dict['ds']).strftime('%Y-%m-%d') | ||||
|     #             except: | ||||
|     #                 logger.warning(f"无法解析的时间格式: {row_dict['ds']}") | ||||
|     #         # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d') | ||||
|     #         # row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S') | ||||
|     #         check_query = sqlitedb.select_data( | ||||
|     #             'trueandpredict', where_condition=f"ds = '{row.ds}'") | ||||
|     #         if len(check_query) > 0: | ||||
|     #             set_clause = ", ".join( | ||||
|     #                 [f"{key} = '{value}'" for key, value in row_dict.items()]) | ||||
|     #             sqlitedb.update_data( | ||||
|     #                 'trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'") | ||||
|     #             continue | ||||
|     #         sqlitedb.insert_data('trueandpredict', tuple( | ||||
|     #             row_dict.values()), columns=row_dict.keys()) | ||||
|             for row in update_y.itertuples(index=False): | ||||
|                 try: | ||||
|                     row_dict = row._asdict() | ||||
|                     yy = df[df['ds'] == row_dict['ds']]['y'].values[0] | ||||
|                     LOW = df[df['ds'] == row_dict['ds']]['Brentzdj'].values[0] | ||||
|                     HIGH = df[df['ds'] == row_dict['ds']]['Brentzgj'].values[0] | ||||
|                     sqlitedb.update_data( | ||||
|                         'accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'") | ||||
|                 except: | ||||
|                     logger.info(f'更新accuracy表的y值失败:{row_dict}') | ||||
|             # except Exception as e: | ||||
|             #     logger.info(f'更新accuracy表的y值失败:{e}') | ||||
| 
 | ||||
|     # # 更新accuracy表的y值 | ||||
|     # if not sqlitedb.check_table_exists('accuracy'): | ||||
|     #     pass | ||||
|     # else: | ||||
|     #     update_y = sqlitedb.select_data( | ||||
|     #         'accuracy', where_condition="y is null") | ||||
|     #     if len(update_y) > 0: | ||||
|     #         logger.info('更新accuracy表的y值') | ||||
|     #         # 找到update_y 中ds且df中的y的行 | ||||
|     #         update_y = update_y[update_y['ds'] <= end_time] | ||||
|     #         logger.info(f'要更新y的信息:{update_y}') | ||||
|     #         # try: | ||||
|     #         for row in update_y.itertuples(index=False): | ||||
|     #             try: | ||||
|     #                 row_dict = row._asdict() | ||||
|     #                 yy = df[df['ds'] == row_dict['ds']]['y'].values[0] | ||||
|     #                 LOW = df[df['ds'] == row_dict['ds']]['Brentzdj'].values[0] | ||||
|     #                 HIGH = df[df['ds'] == row_dict['ds']]['Brentzgj'].values[0] | ||||
|     #                 sqlitedb.update_data( | ||||
|     #                     'accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'") | ||||
|     #             except: | ||||
|     #                 logger.info(f'更新accuracy表的y值失败:{row_dict}') | ||||
|     #         # except Exception as e: | ||||
|     #         #     logger.info(f'更新accuracy表的y值失败:{e}') | ||||
|     # 判断当前日期是不是周一 | ||||
|     is_weekday = datetime.datetime.now().weekday() == 0 | ||||
|     if is_weekday: | ||||
|         logger.info('今天是周一,更新预测模型') | ||||
|         # 计算最近60天预测残差最低的模型名称 | ||||
|         model_results = sqlitedb.select_data( | ||||
|             'trueandpredict', order_by="ds DESC", limit="60") | ||||
|         # 删除空值率为90%以上的列 | ||||
|         if len(model_results) > 10: | ||||
|             model_results = model_results.dropna( | ||||
|                 thresh=len(model_results)*0.1, axis=1) | ||||
|         # 删除空行 | ||||
|         model_results = model_results.dropna() | ||||
|         modelnames = model_results.columns.to_list()[2:-1] | ||||
|         for col in model_results[modelnames].select_dtypes(include=['object']).columns: | ||||
|             model_results[col] = model_results[col].astype(np.float32) | ||||
|         # 计算每个预测值与真实值之间的偏差率 | ||||
|         for model in modelnames: | ||||
|             model_results[f'{model}_abs_error_rate'] = abs( | ||||
|                 model_results['y'] - model_results[model]) / model_results['y'] | ||||
|         # 获取每行对应的最小偏差率值 | ||||
|         min_abs_error_rate_values = model_results.apply( | ||||
|             lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1) | ||||
|         # 获取每行对应的最小偏差率值对应的列名 | ||||
|         min_abs_error_rate_column_name = model_results.apply( | ||||
|             lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1) | ||||
|         # 将列名索引转换为列名 | ||||
|         min_abs_error_rate_column_name = min_abs_error_rate_column_name.map( | ||||
|             lambda x: x.split('_')[0]) | ||||
|         # 取出现次数最多的模型名称 | ||||
|         most_common_model = min_abs_error_rate_column_name.value_counts().idxmax() | ||||
|         logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}") | ||||
|         # 保存结果到数据库 | ||||
|         if not sqlitedb.check_table_exists('most_model'): | ||||
|             sqlitedb.create_table( | ||||
|                 'most_model', columns="ds datetime, most_common_model TEXT") | ||||
|         sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime( | ||||
|             '%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',)) | ||||
| 
 | ||||
|     # # 判断当前日期是不是周一 | ||||
|     # is_weekday = datetime.datetime.now().weekday() == 0 | ||||
|     # if is_weekday: | ||||
|     #     logger.info('今天是周一,更新预测模型') | ||||
|     #     # 计算最近60天预测残差最低的模型名称 | ||||
|     #     model_results = sqlitedb.select_data( | ||||
|     #         'trueandpredict', order_by="ds DESC", limit="60") | ||||
|     #     # 删除空值率为90%以上的列 | ||||
|     #     if len(model_results) > 10: | ||||
|     #         model_results = model_results.dropna( | ||||
|     #             thresh=len(model_results)*0.1, axis=1) | ||||
|     #     # 删除空行 | ||||
|     #     model_results = model_results.dropna() | ||||
|     #     modelnames = model_results.columns.to_list()[2:-1] | ||||
|     #     for col in model_results[modelnames].select_dtypes(include=['object']).columns: | ||||
|     #         model_results[col] = model_results[col].astype(np.float32) | ||||
|     #     # 计算每个预测值与真实值之间的偏差率 | ||||
|     #     for model in modelnames: | ||||
|     #         model_results[f'{model}_abs_error_rate'] = abs( | ||||
|     #             model_results['y'] - model_results[model]) / model_results['y'] | ||||
|     #     # 获取每行对应的最小偏差率值 | ||||
|     #     min_abs_error_rate_values = model_results.apply( | ||||
|     #         lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1) | ||||
|     #     # 获取每行对应的最小偏差率值对应的列名 | ||||
|     #     min_abs_error_rate_column_name = model_results.apply( | ||||
|     #         lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1) | ||||
|     #     # 将列名索引转换为列名 | ||||
|     #     min_abs_error_rate_column_name = min_abs_error_rate_column_name.map( | ||||
|     #         lambda x: x.split('_')[0]) | ||||
|     #     # 取出现次数最多的模型名称 | ||||
|     #     most_common_model = min_abs_error_rate_column_name.value_counts().idxmax() | ||||
|     #     logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}") | ||||
|     #     # 保存结果到数据库 | ||||
|     #     if not sqlitedb.check_table_exists('most_model'): | ||||
|     #         sqlitedb.create_table( | ||||
|     #             'most_model', columns="ds datetime, most_common_model TEXT") | ||||
|     #     sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime( | ||||
|     #         '%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',)) | ||||
|     if is_corr: | ||||
|         df = corr_feature(df=df) | ||||
| 
 | ||||
|     # if is_corr: | ||||
|     #     df = corr_feature(df=df) | ||||
|     df1 = df.copy()  # 备份一下,后面特征筛选完之后加入ds y 列用 | ||||
|     logger.info(f"开始训练模型...") | ||||
|     row, col = df.shape | ||||
| 
 | ||||
|     # df1 = df.copy()  # 备份一下,后面特征筛选完之后加入ds y 列用 | ||||
|     # logger.info(f"开始训练模型...") | ||||
|     # row, col = df.shape | ||||
|     now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') | ||||
|     ex_Model_Juxiting(df, | ||||
|              horizon=global_config['horizon'], | ||||
|              input_size=global_config['input_size'], | ||||
|              train_steps=global_config['train_steps'], | ||||
|              val_check_steps=global_config['val_check_steps'], | ||||
|              early_stop_patience_steps=global_config['early_stop_patience_steps'], | ||||
|              is_debug=global_config['is_debug'], | ||||
|              dataset=global_config['dataset'], | ||||
|              is_train=global_config['is_train'], | ||||
|              is_fivemodels=global_config['is_fivemodels'], | ||||
|              val_size=global_config['val_size'], | ||||
|              test_size=global_config['test_size'], | ||||
|              settings=global_config['settings'], | ||||
|              now=now, | ||||
|              etadata=etadata, | ||||
|              modelsindex=global_config['modelsindex'], | ||||
|              data=data, | ||||
|              is_eta=global_config['is_eta'], | ||||
|              end_time=global_config['end_time'], | ||||
|              ) | ||||
| 
 | ||||
|     # now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') | ||||
|     # ex_Model(df, | ||||
|     #          horizon=global_config['horizon'], | ||||
|     #          input_size=global_config['input_size'], | ||||
|     #          train_steps=global_config['train_steps'], | ||||
|     #          val_check_steps=global_config['val_check_steps'], | ||||
|     #          early_stop_patience_steps=global_config['early_stop_patience_steps'], | ||||
|     #          is_debug=global_config['is_debug'], | ||||
|     #          dataset=global_config['dataset'], | ||||
|     #          is_train=global_config['is_train'], | ||||
|     #          is_fivemodels=global_config['is_fivemodels'], | ||||
|     #          val_size=global_config['val_size'], | ||||
|     #          test_size=global_config['test_size'], | ||||
|     #          settings=global_config['settings'], | ||||
|     #          now=now, | ||||
|     #          etadata=etadata, | ||||
|     #          modelsindex=global_config['modelsindex'], | ||||
|     #          data=data, | ||||
|     #          is_eta=global_config['is_eta'], | ||||
|     #          end_time=global_config['end_time'], | ||||
|     #          ) | ||||
|     logger.info('模型训练完成') | ||||
| 
 | ||||
|     # logger.info('模型训练完成') | ||||
|     logger.info('训练数据绘图ing') | ||||
|     model_results3 = model_losss_juxiting( | ||||
|         sqlitedb, end_time=global_config['end_time'], is_fivemodels=global_config['is_fivemodels']) | ||||
|     logger.info('训练数据绘图end') | ||||
| 
 | ||||
|     # logger.info('训练数据绘图ing') | ||||
|     # model_results3 = model_losss_juxiting( | ||||
|     #     sqlitedb, end_time=global_config['end_time'], is_fivemodels=global_config['is_fivemodels']) | ||||
|     # logger.info('训练数据绘图end') | ||||
|     push_market_value() | ||||
| 
 | ||||
|     # push_market_value() | ||||
|     sql_inset_predict(global_config) | ||||
| 
 | ||||
|     # sql_inset_predict(global_config) | ||||
| 
 | ||||
|     # # 模型报告 | ||||
|     # 模型报告 | ||||
|     # logger.info('制作报告ing') | ||||
|     # title = f'{settings}--{end_time}-预测报告'  # 报告标题 | ||||
|     # reportname = f'聚烯烃PP大模型月度预测--{end_time}.pdf'  # 报告文件名 | ||||
| @ -530,7 +530,7 @@ if __name__ == '__main__': | ||||
|     #         logger.info(f'预测失败:{e}') | ||||
|     #         continue | ||||
| 
 | ||||
|     global_config['end_time'] = '2025-08-01' | ||||
|     global_config['end_time'] = '2025-08-04' | ||||
|     predict_main() | ||||
|     # push_market_value() | ||||
| 
 | ||||
|  | ||||
| @ -513,8 +513,7 @@ if __name__ == '__main__': | ||||
|     #         continue | ||||
| 
 | ||||
| 
 | ||||
|     global_config['end_time'] = '2025-08-01' | ||||
|     global_config['db_mysql'].connect() | ||||
|     global_config['end_time'] = '2025-08-04' | ||||
|     predict_main() | ||||
| 
 | ||||
| 
 | ||||
|  | ||||
| @ -457,12 +457,14 @@ def ex_Model_Juxiting(df, horizon, input_size, train_steps, val_check_steps, ear | ||||
|     # 处理非有限值(NA 或 inf),将其替换为 0 | ||||
|     df_predict = df_predict.fillna(0) | ||||
|     df_predict = df_predict.replace([np.inf, -np.inf], 0) | ||||
|     df_predict.astype( | ||||
|         {col: 'int' for col in df_predict.columns if col not in ['ds']}) | ||||
| 
 | ||||
|     # 添加预测时间 | ||||
|     df_predict['created_dt'] = end_time | ||||
| 
 | ||||
|      # 预测结果保留整数(先四舍五入再转换为整数类型) | ||||
|     df_predict = df_predict.round().astype({col: 'int' for col in df_predict.columns if col not in ['ds', 'created_dt']}) | ||||
| 
 | ||||
| 
 | ||||
|     # 保存预测值 | ||||
|     df_predict.to_csv(os.path.join(config.dataset, "predict.csv"), index=False) | ||||
| 
 | ||||
|  | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user