186 lines
5.5 KiB
Plaintext
186 lines
5.5 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"id": "9048d286-415f-4a33-be3a-9d7099aa85de",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import pandas as pd\n",
|
||
"from config_jingbo import *"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 19,
|
||
"id": "07e338e7-1dd1-417f-b4e2-65d0efc983d6",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df = pd.read_csv(os.path.join(dataset,'last_update_times.csv'))\n",
|
||
"df = df.sort_values(by=['warning_date'], ascending=[False])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 33,
|
||
"id": "659eec10-f0b8-4d65-b70e-6f07f45291bc",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"y_last_update_time = df[df['feature']=='y']['warning_date'].values[0]\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 49,
|
||
"id": "31035e6f-36e8-4b17-a14b-f7dd79ae085a",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>last_update_time</th>\n",
|
||
" <th>feature</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>500</th>\n",
|
||
" <td>2024-11-14</td>\n",
|
||
" <td>lmcads03 lme comdty</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>251</th>\n",
|
||
" <td>2024-11-14</td>\n",
|
||
" <td>美国MEH轻原油现货价格(美湾)</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>231</th>\n",
|
||
" <td>2024-11-14</td>\n",
|
||
" <td>WTI原油Cushing-C1</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>264</th>\n",
|
||
" <td>2024-11-14</td>\n",
|
||
" <td>LLS原油现货价格</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>82</th>\n",
|
||
" <td>2024-11-14</td>\n",
|
||
" <td>OMAN原油:中质:远期现货DES价:山东(日)</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>...</th>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>83</th>\n",
|
||
" <td>2023-01-03</td>\n",
|
||
" <td>PVM Dubai EFS/Swap vs ICE First Month Brent</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>91</th>\n",
|
||
" <td>2022-11-16</td>\n",
|
||
" <td>Brent/迪拜原油升贴水</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>94</th>\n",
|
||
" <td>2022-01-31</td>\n",
|
||
" <td>W-B活跃合约价差</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>95</th>\n",
|
||
" <td>2022-01-31</td>\n",
|
||
" <td>B-W活跃合约价差</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>31</th>\n",
|
||
" <td>2018-10-24</td>\n",
|
||
" <td>西北欧即期Brent 211利润</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"<p>73 rows × 2 columns</p>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" last_update_time feature\n",
|
||
"500 2024-11-14 lmcads03 lme comdty\n",
|
||
"251 2024-11-14 美国MEH轻原油现货价格(美湾)\n",
|
||
"231 2024-11-14 WTI原油Cushing-C1\n",
|
||
"264 2024-11-14 LLS原油现货价格\n",
|
||
"82 2024-11-14 OMAN原油:中质:远期现货DES价:山东(日)\n",
|
||
".. ... ...\n",
|
||
"83 2023-01-03 PVM Dubai EFS/Swap vs ICE First Month Brent\n",
|
||
"91 2022-11-16 Brent/迪拜原油升贴水\n",
|
||
"94 2022-01-31 W-B活跃合约价差\n",
|
||
"95 2022-01-31 B-W活跃合约价差\n",
|
||
"31 2018-10-24 西北欧即期Brent 211利润\n",
|
||
"\n",
|
||
"[73 rows x 2 columns]"
|
||
]
|
||
},
|
||
"execution_count": 49,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df[df['warning_date']<y_last_update_time][['last_update_time','feature']]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "937a9adb-1652-4d6b-a5c7-828d7c17769d",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df2 = pd.read_csv(os.path.join(dataset,''))"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.11.7"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|