648 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			648 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # coding: utf-8
 | ||
| 
 | ||
| from statsmodels.tools.eval_measures import mse, rmse
 | ||
| from pandas import Series, DataFrame
 | ||
| import cufflinks as cf
 | ||
| from sklearn.metrics import r2_score
 | ||
| from sklearn.model_selection import train_test_split
 | ||
| from sklearn.metrics import mean_squared_error
 | ||
| import pickle
 | ||
| import warnings
 | ||
| from sklearn.model_selection import GridSearchCV
 | ||
| from sklearn.metrics import mean_absolute_error
 | ||
| from xgboost import plot_importance, plot_tree
 | ||
| import xgboost as xgb
 | ||
| import plotly.graph_objects as go
 | ||
| import plotly.express as px
 | ||
| import statsmodels.api as sm
 | ||
| from xgboost import XGBRegressor
 | ||
| from sklearn.linear_model import Lasso
 | ||
| import sklearn.datasets as datasets
 | ||
| from sklearn import preprocessing
 | ||
| from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
 | ||
| from plotly import __version__
 | ||
| import random
 | ||
| import seaborn as sn
 | ||
| import matplotlib.pyplot as plt
 | ||
| import numpy as np
 | ||
| import pandas as pd
 | ||
| import requests
 | ||
| import json
 | ||
| import xlrd
 | ||
| import xlwt
 | ||
| from datetime import datetime, timedelta
 | ||
| import time
 | ||
| # 变量定义
 | ||
| login_url = "http://10.200.32.39/jingbo-api/api/server/login"
 | ||
| search_url = "http://10.200.32.39/jingbo-api/api/warehouse/dwDataItem/queryByItemNos"
 | ||
| 
 | ||
| login_push_url = "http://10.200.32.39/jingbo-api/api/server/login"
 | ||
| upload_url = "http://10.200.32.39/jingbo-api/api/dw/dataValue/pushDataValueList"
 | ||
| 
 | ||
| login_data = {
 | ||
|     "data": {
 | ||
|         "account": "api_dev",
 | ||
|         "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=",
 | ||
|         "tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
 | ||
|         "terminal": "API"
 | ||
|     },
 | ||
|     "funcModule": "API",
 | ||
|     "funcOperation": "获取token"
 | ||
| }
 | ||
| 
 | ||
| login_push_data = {
 | ||
|     "data": {
 | ||
|         "account": "api_dev",
 | ||
|         "password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=",
 | ||
|         "tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
 | ||
|         "terminal": "API"
 | ||
|     },
 | ||
|     "funcModule": "API",
 | ||
|     "funcOperation": "获取token"
 | ||
| }
 | ||
| 
 | ||
| # read_file_path_name = "液化气数据.xls"
 | ||
| read_file_path_name = "液化气数据.xlsx"
 | ||
| one_cols = []
 | ||
| two_cols = []
 | ||
| 
 | ||
| 
 | ||
| # 导入机器学习算法模型
 | ||
| 
 | ||
| try:
 | ||
|     from keras.preprocessing.sequence import TimeseriesGenerator
 | ||
| except:
 | ||
|     from tensorflow.keras.preprocessing.sequence import TimeseriesGenerator
 | ||
| 
 | ||
| 
 | ||
| # 切割训练数据和样本数据
 | ||
| 
 | ||
| # 用于模型评分
 | ||
| 
 | ||
| le = preprocessing.LabelEncoder()
 | ||
| 
 | ||
| # print(__version__) # requires version >= 1.9.0
 | ||
| 
 | ||
| 
 | ||
| cf.go_offline()
 | ||
| 
 | ||
| random.seed(100)
 | ||
| 
 | ||
| 
 | ||
| # 数据获取
 | ||
| 
 | ||
| 
 | ||
| def get_head_auth():
 | ||
|     login_res = requests.post(url=login_url, json=login_data, timeout=(3, 5))
 | ||
|     text = json.loads(login_res.text)
 | ||
|     if text["status"]:
 | ||
|         token = text["data"]["accessToken"]
 | ||
|         print('获取的token:', token)
 | ||
|         return token
 | ||
|     else:
 | ||
|         print("获取认证失败")
 | ||
|         return None
 | ||
| 
 | ||
| 
 | ||
| def get_data_value(token, dataItemNoList, date):
 | ||
|     search_data = {
 | ||
|         "data": {
 | ||
|             "date": date,
 | ||
|             "dataItemNoList": dataItemNoList
 | ||
|         },
 | ||
|         "funcModule": "数据项",
 | ||
|         "funcOperation": "查询"
 | ||
|     }
 | ||
| 
 | ||
|     headers = {"Authorization": token}
 | ||
|     search_res = requests.post(
 | ||
|         url=search_url, headers=headers, json=search_data, timeout=(3, 5))
 | ||
|     try:
 | ||
|         search_value = json.loads(search_res.text)["data"]
 | ||
|     except json.JSONDecodeError as e:
 | ||
|         print(f"Error decoding JSON: {e}")
 | ||
|         print("Response content:", search_res.text)
 | ||
|         return None
 | ||
|     if search_value:
 | ||
|         return search_value
 | ||
|     else:
 | ||
|         print("今天没有新数据")
 | ||
|         return search_value
 | ||
| 
 | ||
| 
 | ||
| # xls文件处理
 | ||
| 
 | ||
| 
 | ||
| def get_cur_time(date=''):
 | ||
|     if date == '':
 | ||
|         now = datetime.now()
 | ||
|     else:
 | ||
|         now = date
 | ||
|     year = now.year
 | ||
|     month = now.month
 | ||
|     day = now.day
 | ||
| 
 | ||
|     if month < 10:
 | ||
|         month = "0" + str(month)
 | ||
|     if day < 10:
 | ||
|         day = "0" + str(day)
 | ||
|     cur_time = str(year) + str(month) + str(day)
 | ||
|     cur_time2 = str(year) + "-" + str(month) + "-" + str(day)
 | ||
| #     cur_time = '20231011'
 | ||
| #     cur_time2 = '2023-10-11'
 | ||
|     return cur_time, cur_time2
 | ||
| 
 | ||
| 
 | ||
| def get_head_push_auth():
 | ||
|     login_res = requests.post(
 | ||
|         url=login_push_url, json=login_push_data, timeout=(3, 5))
 | ||
|     text = json.loads(login_res.text)
 | ||
|     if text["status"]:
 | ||
|         token = text["data"]["accessToken"]
 | ||
|         return token
 | ||
|     else:
 | ||
|         print("获取认证失败")
 | ||
|         return None
 | ||
| 
 | ||
| 
 | ||
| def upload_data_to_system(token_push, date):
 | ||
|     data = {
 | ||
|         "funcModule": "数据表信息列表",
 | ||
|         "funcOperation": "新增",
 | ||
|         "data": [
 | ||
|             {"dataItemNo": "250855713|Forecast_Price|ACN",
 | ||
|              "dataDate": date,
 | ||
|              "dataStatus": "add",
 | ||
|              "dataValue": forecast_price()
 | ||
|              }
 | ||
| 
 | ||
|         ]
 | ||
|     }
 | ||
|     # headers = {"Authorization": token_push}
 | ||
|     # res = requests.post(url=upload_url, headers=headers, json=data, timeout=(3, 5))
 | ||
|     # print(res.text)
 | ||
|     print('预测值:', data['data'][0]['dataValue'])
 | ||
| 
 | ||
| 
 | ||
| def getLogToken():
 | ||
|     login_res = requests.post(url=login_url, json=login_data, timeout=(3, 5))
 | ||
|     text = json.loads(login_res.text)
 | ||
|     if text["status"]:
 | ||
|         token = text["data"]["accessToken"]
 | ||
|     else:
 | ||
|         print("获取认证失败")
 | ||
|         token = None
 | ||
|     return token
 | ||
| 
 | ||
| 
 | ||
| def updateYesterdayExcelData(date='', token=None):
 | ||
|     # 使用pandas读取Excel文件
 | ||
|     df = pd.read_excel(read_file_path_name, engine='openpyxl')
 | ||
| 
 | ||
|     # 获取第二行的数据作为列名
 | ||
|     one_cols = df.iloc[0, :].tolist()
 | ||
| 
 | ||
|     # 获取当前日期的前一天
 | ||
|     if date == '':
 | ||
|         previous_date = (datetime.now() - timedelta(days=1)
 | ||
|                          ).strftime('%Y-%m-%d')
 | ||
|     else:
 | ||
|         # 字符串转日期
 | ||
|         previous_date = (datetime.strptime(date, "%Y-%m-%d") -
 | ||
|                          timedelta(days=1)).strftime('%Y-%m-%d')
 | ||
| 
 | ||
|     cur_time, cur_time2 = getNow(previous_date)
 | ||
|     search_data = {
 | ||
|         "data": {
 | ||
|             "date": cur_time,
 | ||
|             "dataItemNoList": one_cols[1:]
 | ||
|         },
 | ||
|         "funcModule": "数据项",
 | ||
|         "funcOperation": "查询"
 | ||
|     }
 | ||
|     headers = {"Authorization": token}
 | ||
|     search_res = requests.post(
 | ||
|         url=search_url, headers=headers, json=search_data, timeout=(3, 5))
 | ||
|     print('数据请求结果:')
 | ||
|     print(search_res.text)
 | ||
|     search_value = json.loads(search_res.text)["data"]
 | ||
|     if search_value:
 | ||
|         datas = search_value
 | ||
|     else:
 | ||
|         datas = None
 | ||
| 
 | ||
|     append_rows = [cur_time2]
 | ||
|     dataItemNo_dataValue = {}
 | ||
|     for data_value in datas:
 | ||
|         if "dataValue" not in data_value:
 | ||
|             print(data_value)
 | ||
|             dataItemNo_dataValue[data_value["dataItemNo"]] = ""
 | ||
|         else:
 | ||
|             dataItemNo_dataValue[data_value["dataItemNo"]
 | ||
|                                  ] = data_value["dataValue"]
 | ||
|     for value in one_cols[1:]:
 | ||
|         if value in dataItemNo_dataValue:
 | ||
|             append_rows.append(dataItemNo_dataValue[value])
 | ||
|         else:
 | ||
|             append_rows.append("")
 | ||
| 
 | ||
|     print('更新数据前')
 | ||
|     print(df.tail(1))
 | ||
|     # 检查日期是否已存在于数据中
 | ||
|     if previous_date not in df['日期'].values:
 | ||
|         # 将新的数据添加到DataFrame中
 | ||
|         new_row = pd.DataFrame([append_rows], columns=df.columns.tolist())
 | ||
|         df = pd.concat([df, new_row], ignore_index=True)
 | ||
|     else:
 | ||
|         # 更新现有数据
 | ||
|         print('日期存在,即将更新')
 | ||
|         print('新数据', append_rows[1:])
 | ||
|         df.loc[df['日期'] == previous_date,
 | ||
|                df.columns.tolist()[1:]] = append_rows[1:]
 | ||
| 
 | ||
|     print('更新数据后')
 | ||
|     print(df.tail(1))
 | ||
|     # 使用pandas保存Excel文件
 | ||
|     df.to_excel("液化气数据.xls", index=False, engine='openpyxl')
 | ||
| 
 | ||
| 
 | ||
| price_list = []
 | ||
| 
 | ||
| 
 | ||
| def forecast_price():
 | ||
|     # df_test = pd.read_csv('定价模型数据收集0212.csv')
 | ||
|     df_test = pd.read_excel('液化气数据.xls')
 | ||
|     df_test.drop([0], inplace=True)
 | ||
|     try:
 | ||
|         df_test['Date'] = pd.to_datetime(
 | ||
|             df_test['Date'],  format='%m/%d/%Y', infer_datetime_format=True)
 | ||
|     except:
 | ||
|         df_test['Date'] = pd.to_datetime(
 | ||
|             df_test['Date'],  format=r'%Y-%m-%d', infer_datetime_format=True)
 | ||
| 
 | ||
|     df_test_1 = df_test
 | ||
|     df_test_1 = df_test_1.fillna(df_test.ffill())
 | ||
|     df_test_1 = df_test_1.fillna(df_test_1.bfill())
 | ||
| 
 | ||
|     # 选择用于模型训练的列名称
 | ||
|     col_for_training = df_test_1.columns
 | ||
| 
 | ||
|     import joblib
 | ||
|     Best_model_DalyLGPrice = joblib.load("日度价格预测_液化气最佳模型.pkl")
 | ||
|     # 最新的一天为最后一行的数据
 | ||
| 
 | ||
|     df_test_1_Day = df_test_1.tail(1)
 | ||
|     # 移除不需要的列
 | ||
|     df_test_1_Day.index = df_test_1_Day["Date"]
 | ||
|     df_test_1_Day = df_test_1_Day.drop(["Date"], axis=1)
 | ||
|     df_test_1_Day = df_test_1_Day.drop('Price', axis=1)
 | ||
|     df_test_1_Day = df_test_1_Day.dropna()
 | ||
| 
 | ||
|     for col in df_test_1_Day.columns:
 | ||
|         df_test_1_Day[col] = pd.to_numeric(df_test_1_Day[col], errors='coerce')
 | ||
|     # 预测今日价格,显示至小数点后两位
 | ||
|     Ypredict_Today = Best_model_DalyLGPrice.predict(df_test_1_Day)
 | ||
| 
 | ||
|     df_test_1_Day['日度预测价格'] = Ypredict_Today
 | ||
|     print(df_test_1_Day['日度预测价格'])
 | ||
|     a = df_test_1_Day['日度预测价格']
 | ||
|     a = a[0]
 | ||
|     a = float(a)
 | ||
|     a = round(a, 2)
 | ||
|     price_list.append(a)
 | ||
|     return a
 | ||
| 
 | ||
| 
 | ||
| def optimize_Model():
 | ||
|     from sklearn.model_selection import train_test_split
 | ||
|     from sklearn.impute import SimpleImputer
 | ||
|     from sklearn.preprocessing import OrdinalEncoder
 | ||
|     from sklearn.feature_selection import SelectFromModel
 | ||
|     from sklearn.metrics import mean_squared_error, r2_score
 | ||
|     import pandas as pd
 | ||
| 
 | ||
|     pd.set_option('display.max_rows', 40)
 | ||
|     pd.set_option('display.max_columns', 40)
 | ||
|     df_test = pd.read_excel('液化气数据.xls')
 | ||
|     df_test.drop([0], inplace=True)
 | ||
|     try:
 | ||
|         df_test['Date'] = pd.to_datetime(
 | ||
|             df_test['Date'],  format='%m/%d/%Y', infer_datetime_format=True)
 | ||
|     except:
 | ||
|         df_test['Date'] = pd.to_datetime(
 | ||
|             df_test['Date'],  format=r'%Y-%m-%d', infer_datetime_format=True)
 | ||
| 
 | ||
|     # 将缺失值补为前一个或者后一个数值
 | ||
|     df_test_1 = df_test
 | ||
|     df_test_1 = df_test_1.fillna(df_test.ffill())
 | ||
|     df_test_1 = df_test_1.fillna(df_test_1.bfill())
 | ||
|     df_test_1["Date"] = pd.to_datetime(df_test_1["Date"])
 | ||
|     df_test_1.index = df_test_1["Date"]
 | ||
|     df_test_1 = df_test_1.drop(["Date"], axis=1)
 | ||
|     df_test_1 = df_test_1.astype('float')
 | ||
| 
 | ||
|     import numpy as np
 | ||
|     import pandas as pd
 | ||
|     from pandas import Series, DataFrame
 | ||
| 
 | ||
|     import matplotlib.pyplot as plt
 | ||
| 
 | ||
|     import sklearn.datasets as datasets
 | ||
| 
 | ||
|     # 导入机器学习算法模型
 | ||
|     from sklearn.linear_model import Lasso
 | ||
|     from xgboost import XGBRegressor
 | ||
| 
 | ||
|     import statsmodels.api as sm
 | ||
|     try:
 | ||
|         from keras.preprocessing.sequence import TimeseriesGenerator
 | ||
|     except:
 | ||
|         from tensorflow.keras.preprocessing.sequence import TimeseriesGenerator
 | ||
| 
 | ||
|     import plotly.express as px
 | ||
|     import plotly.graph_objects as go
 | ||
| 
 | ||
|     import xgboost as xgb
 | ||
|     from xgboost import plot_importance, plot_tree
 | ||
|     from sklearn.metrics import mean_absolute_error
 | ||
|     from statsmodels.tools.eval_measures import mse, rmse
 | ||
|     from sklearn.model_selection import GridSearchCV
 | ||
|     from xgboost import XGBRegressor
 | ||
|     import warnings
 | ||
|     import pickle
 | ||
| 
 | ||
|     from sklearn.metrics import mean_squared_error
 | ||
| 
 | ||
|     # 切割训练数据和样本数据
 | ||
|     from sklearn.model_selection import train_test_split
 | ||
| 
 | ||
|     # 用于模型评分
 | ||
|     from sklearn.metrics import r2_score
 | ||
| 
 | ||
|     dataset1 = df_test_1.drop('Price', axis=1)  # .astype(float)
 | ||
| 
 | ||
|     y = df_test_1['Price']
 | ||
| 
 | ||
|     x = dataset1
 | ||
| 
 | ||
|     train = x
 | ||
|     target = y
 | ||
| 
 | ||
|     # 切割数据样本集合测试集
 | ||
|     X_train, x_test, y_train, y_true = train_test_split(
 | ||
|         train, target, test_size=0.2, random_state=0)
 | ||
| 
 | ||
|     # 模型缩写
 | ||
|     Lasso = Lasso(random_state=0)
 | ||
|     XGBR = XGBRegressor(random_state=0)
 | ||
|     # 训练模型
 | ||
|     Lasso.fit(X_train, y_train)
 | ||
|     XGBR.fit(X_train, y_train)
 | ||
|     # 模型拟合
 | ||
|     y_pre_Lasso = Lasso.predict(x_test)
 | ||
|     y_pre_XGBR = XGBR.predict(x_test)
 | ||
| 
 | ||
|     # 计算Lasso、XGBR、RandomForestR、AdaBoostR、GradientBoostingR、BaggingRegressor各模型的R²
 | ||
|     Lasso_score = r2_score(y_true, y_pre_Lasso)
 | ||
|     XGBR_score = r2_score(y_true, y_pre_XGBR)
 | ||
| 
 | ||
|     # 计算Lasso、XGBR的MSE和RMSE
 | ||
|     Lasso_MSE = mean_squared_error(y_true, y_pre_Lasso)
 | ||
|     XGBR_MSE = mean_squared_error(y_true, y_pre_XGBR)
 | ||
| 
 | ||
|     Lasso_RMSE = np.sqrt(Lasso_MSE)
 | ||
|     XGBR_RMSE = np.sqrt(XGBR_MSE)
 | ||
|     # 将不同模型的不同误差值整合成一个表格
 | ||
|     model_results = pd.DataFrame([['Lasso', Lasso_RMSE, Lasso_score],
 | ||
|                                  ['XgBoost', XGBR_RMSE, XGBR_score]],
 | ||
|                                  columns=['模型(Model)', '均方根误差(RMSE)', 'R^2 score'])
 | ||
|     # 将模型名称(Model)列设置为索引
 | ||
|     model_results1 = model_results.set_index('模型(Model)')
 | ||
| 
 | ||
|     model_results1
 | ||
|     # 定义plot_feature_importance函数,该函数用于计算特征重要性。此部分代码无需调整
 | ||
| 
 | ||
|     def plot_feature_importance(importance, names, model_type):
 | ||
|         feature_importance = np.array(importance)
 | ||
|         feature_names = np.array(names)
 | ||
| 
 | ||
|         data = {'feature_names': feature_names,
 | ||
|                 'feature_importance': feature_importance}
 | ||
|         fi_df = pd.DataFrame(data)
 | ||
| 
 | ||
|         fi_df.sort_values(by=['feature_importance'],
 | ||
|                           ascending=False, inplace=True)
 | ||
| 
 | ||
|         plt.figure(figsize=(10, 8))
 | ||
|         sn.barplot(x=fi_df['feature_importance'], y=fi_df['feature_names'])
 | ||
| 
 | ||
|         plt.title(model_type + " "+'FEATURE IMPORTANCE')
 | ||
|         plt.xlabel('FEATURE IMPORTANCE')
 | ||
|         plt.ylabel('FEATURE NAMES')
 | ||
|         from pylab import mpl
 | ||
| 
 | ||
|     # Xgboost 模型参数优化-初步
 | ||
|     # 参考: https://juejin.im/post/6844903661013827598
 | ||
|     # 每次调参时,备选参数数值以同数量级的1、3、10设置即可(比如设置1、3、10,或0.1、0.3、1.0,或0.01,0.03,0.10即可)
 | ||
| 
 | ||
|     from xgboost import XGBRegressor
 | ||
|     from sklearn.model_selection import GridSearchCV
 | ||
| 
 | ||
|     estimator = XGBRegressor(random_state=0,
 | ||
|                              nthread=4,
 | ||
|                              seed=0
 | ||
|                              )
 | ||
|     parameters = {
 | ||
|         'max_depth': range(2, 11, 2),     # 树的最大深度
 | ||
|         'n_estimators': range(50, 101, 10),  # 迭代次数
 | ||
|         'learning_rate': [0.01, 0.03, 0.1, 0.3, 0.5, 1]
 | ||
|     }
 | ||
| 
 | ||
|     grid_search_XGB = GridSearchCV(
 | ||
|         estimator=estimator,
 | ||
|         param_grid=parameters,
 | ||
|         #     n_jobs = 10,
 | ||
|         cv=3,
 | ||
|         verbose=True
 | ||
|     )
 | ||
| 
 | ||
|     grid_search_XGB.fit(X_train, y_train)
 | ||
|     # 如果电脑在此步骤报错,可能是因为计算量太大,超过硬件可支持程度,可注释掉“n_jobs=10”一行
 | ||
| 
 | ||
|     best_parameters = grid_search_XGB.best_estimator_.get_params()
 | ||
|     y_pred = grid_search_XGB.predict(x_test)
 | ||
| 
 | ||
|     op_XGBR_score = r2_score(y_true, y_pred)
 | ||
|     op_XGBR_MSE = mean_squared_error(y_true, y_pred)
 | ||
|     op_XGBR_RMSE = np.sqrt(op_XGBR_MSE)
 | ||
| 
 | ||
|     model_results2 = pd.DataFrame([['Optimized_Xgboost', op_XGBR_RMSE, op_XGBR_score]],
 | ||
|                                   columns=['模型(Model)', '均方根误差(RMSE)', 'R^2 score'])
 | ||
|     model_results2 = model_results2.set_index('模型(Model)')
 | ||
| 
 | ||
|     try:
 | ||
|         results = model_results1.append(model_results2, ignore_index=False)
 | ||
|     except:
 | ||
|         results = pd.concat(
 | ||
|             [model_results1, model_results2], ignore_index=True)
 | ||
|     import pickle
 | ||
| 
 | ||
|     Pkl_Filename = "日度价格预测_液化气最佳模型.pkl"
 | ||
| 
 | ||
|     with open(Pkl_Filename, 'wb') as file:
 | ||
|         pickle.dump(grid_search_XGB, file)
 | ||
| 
 | ||
| 
 | ||
| def read_xls_data():
 | ||
|     global one_cols, two_cols
 | ||
|     # 使用pandas读取Excel文件
 | ||
|     df = pd.read_excel(read_file_path_name, header=None)  # 不自动识别列名
 | ||
|     # 获取第二行数据(索引为1)
 | ||
|     one_cols = df.iloc[1].tolist()[1:]
 | ||
| 
 | ||
| 
 | ||
| def start(date=''):
 | ||
|     read_xls_data()
 | ||
| 
 | ||
|     token = get_head_auth()
 | ||
|     if not token:
 | ||
|         return
 | ||
|     token_push = get_head_push_auth()
 | ||
|     if not token_push:
 | ||
|         return
 | ||
|     cur_time, cur_time2 = getNow(date)
 | ||
|     datas = get_data_value(token, one_cols, cur_time)
 | ||
| #     if not datas:
 | ||
| #         return
 | ||
| 
 | ||
|     # data_list = [two_cols, one_cols]
 | ||
|     append_rows = [cur_time2]
 | ||
|     dataItemNo_dataValue = {}
 | ||
|     for data_value in datas:
 | ||
|         if "dataValue" not in data_value:
 | ||
|             dataItemNo_dataValue[data_value["dataItemNo"]] = ""
 | ||
|         else:
 | ||
|             dataItemNo_dataValue[data_value["dataItemNo"]
 | ||
|                                  ] = data_value["dataValue"]
 | ||
| 
 | ||
|     for value in one_cols:
 | ||
|         if value in dataItemNo_dataValue:
 | ||
|             append_rows.append(dataItemNo_dataValue[value])
 | ||
|         else:
 | ||
|             append_rows.append("")
 | ||
|     save_xls_2(append_rows)
 | ||
|     optimize_Model()
 | ||
|     upload_data_to_system(token_push, cur_time)
 | ||
| 
 | ||
|     # data_list.append(three_cols)
 | ||
|     # write_xls(data_list)
 | ||
| 
 | ||
| 
 | ||
| def getNow(date='', offset=0):
 | ||
| 
 | ||
|     if date == '':
 | ||
|         now = datetime.now() - timedelta(days=offset)
 | ||
|     else:
 | ||
|         if isinstance(date, datetime):
 | ||
|             now = date
 | ||
|         else:
 | ||
|             try:
 | ||
|                 # 先尝试常见日期格式解析
 | ||
|                 now = datetime.strptime(str(date), "%Y-%m-%d")
 | ||
|             except ValueError:
 | ||
|                 # 失败后尝试无分隔符格式
 | ||
|                 now = datetime.strptime(str(date), "%Y%m%d")
 | ||
|     now = now - timedelta(days=offset)
 | ||
|     year = now.year
 | ||
|     month = now.month
 | ||
|     day = now.day
 | ||
| 
 | ||
|     if month < 10:
 | ||
|         month = "0" + str(month)
 | ||
|     if day < 10:
 | ||
|         day = "0" + str(day)
 | ||
|     cur_time = str(year) + str(month) + str(day)
 | ||
|     cur_time2 = str(year) + "-" + str(month) + "-" + str(day)
 | ||
|     return cur_time, cur_time2
 | ||
| 
 | ||
| 
 | ||
| def start_1(date=''):
 | ||
|     read_xls_data()
 | ||
|     token = get_head_auth()
 | ||
|     if not token:
 | ||
|         return
 | ||
| 
 | ||
|     cur_time, cur_time2 = getNow(date, offset=1)
 | ||
|     print(f"补充{cur_time}数据")
 | ||
|     datas = get_data_value(token, one_cols, date=cur_time)
 | ||
| #     if not datas:
 | ||
| #         return
 | ||
| 
 | ||
|     # data_list = [two_cols, one_cols]
 | ||
|     append_rows = [cur_time2]
 | ||
|     dataItemNo_dataValue = {}
 | ||
|     for data_value in datas:
 | ||
|         if "dataValue" not in data_value:
 | ||
|             print(data_value)
 | ||
|             dataItemNo_dataValue[data_value["dataItemNo"]] = ""
 | ||
|         else:
 | ||
|             dataItemNo_dataValue[data_value["dataItemNo"]
 | ||
|                                  ] = data_value["dataValue"]
 | ||
| 
 | ||
|     for value in one_cols:
 | ||
|         if value in dataItemNo_dataValue:
 | ||
|             append_rows.append(dataItemNo_dataValue[value])
 | ||
|         else:
 | ||
|             append_rows.append("")
 | ||
|     save_xls_2(append_rows)
 | ||
| 
 | ||
|     # data_list.append(three_cols)
 | ||
|     # write_xls(data_list)
 | ||
| 
 | ||
| 
 | ||
| def save_xls_2(append_rows):
 | ||
|     try:
 | ||
|         # 读取现有数据(假设第一行为列名)
 | ||
|         df = pd.read_excel('液化气数据.xls', sheet_name=0)
 | ||
|         append_rows = pd.DataFrame(append_rows, index=df.columns).T
 | ||
|         # 创建新数据行
 | ||
|         new_date = append_rows['Date'].values[0]
 | ||
| 
 | ||
|         dates = df['Date'].to_list()
 | ||
| 
 | ||
|         # 判断日期是否存在
 | ||
|         if new_date in dates:
 | ||
|             # 找到日期所在行的索引
 | ||
|             date_mask = df['Date'] == new_date
 | ||
|             # 存在则更新数据
 | ||
|             df.loc[date_mask] = append_rows.values
 | ||
|             print(f"更新 {new_date} 数据")
 | ||
|         else:
 | ||
|             # 不存在则追加数据
 | ||
|             df = pd.concat([df, append_rows], ignore_index=True)
 | ||
|             print(f"追加 {new_date} 数据")
 | ||
| 
 | ||
|         # 保存更新后的数据
 | ||
|         df.to_excel('液化气数据.xls', index=False, engine='openpyxl')
 | ||
| 
 | ||
|     except FileNotFoundError:
 | ||
|         # 如果文件不存在则创建新文件
 | ||
|         pd.DataFrame([append_rows]).to_excel(
 | ||
|             '液化气数据.xls', index=False, engine='openpyxl')
 | ||
|     # except Exception as e:
 | ||
|     #     print(f"保存数据时发生错误: {str(e)}")
 | ||
| 
 | ||
| 
 | ||
| start_date = datetime(2025, 3, 10)
 | ||
| end_date = datetime(2025, 3, 20)
 | ||
| 
 | ||
| token = getLogToken()
 | ||
| while start_date < end_date:
 | ||
|     date = start_date.strftime('%Y-%m-%d')
 | ||
|     updateYesterdayExcelData(date, token=token)
 | ||
|     # start(date)
 | ||
|     # # time.sleep(1)
 | ||
|     # start_1(start_date)
 | ||
|     # start_date += timedelta(days=1)
 | ||
|     time.sleep(5)
 |