PriceForecast/aisenzhecode/液化石油气/液化气价格预测ytj.ipynb
2025-04-09 09:48:55 +08:00

942 lines
37 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
" <script type=\"text/javascript\">\n",
" window.PlotlyConfig = {MathJaxConfig: 'local'};\n",
" if (window.MathJax && window.MathJax.Hub && window.MathJax.Hub.Config) {window.MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}\n",
" if (typeof require !== 'undefined') {\n",
" require.undef(\"plotly\");\n",
" requirejs.config({\n",
" paths: {\n",
" 'plotly': ['https://cdn.plot.ly/plotly-2.12.1.min']\n",
" }\n",
" });\n",
" require(['plotly'], function(Plotly) {\n",
" window._Plotly = Plotly;\n",
" });\n",
" }\n",
" </script>\n",
" "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import requests\n",
"import json\n",
"\n",
"from datetime import datetime,timedelta\n",
"\n",
"# 变量定义\n",
"login_url = \"http://10.200.32.39/jingbo-api/api/server/login\"\n",
"search_url = \"http://10.200.32.39/jingbo-api/api/warehouse/dwDataItem/queryByItemNos\"\n",
"queryDataListItemNos_url = \"http://10.200.32.39/jingbo-api/api/warehouse/dwDataItem/queryDataListItemNos\"\n",
"\n",
"\n",
"login_push_url = \"http://10.200.32.39/jingbo-api/api/server/login\"\n",
"upload_url = \"http://10.200.32.39/jingbo-api/api/dw/dataValue/pushDataValueList\"\n",
"\n",
"login_data = {\n",
" \"data\": {\n",
" \"account\": \"api_dev\",\n",
" \"password\": \"ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=\",\n",
" \"tenantHashCode\": \"8a4577dbd919675758d57999a1e891fe\",\n",
" \"terminal\": \"API\"\n",
" },\n",
" \"funcModule\": \"API\",\n",
" \"funcOperation\": \"获取token\"\n",
"}\n",
"\n",
"login_push_data = {\n",
" \"data\": {\n",
" \"account\": \"api_dev\",\n",
" \"password\": \"ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=\",\n",
" \"tenantHashCode\": \"8a4577dbd919675758d57999a1e891fe\",\n",
" \"terminal\": \"API\"\n",
" },\n",
" \"funcModule\": \"API\",\n",
" \"funcOperation\": \"获取token\"\n",
"}\n",
"\n",
"read_file_path_name = \"液化气数据.xlsx\"\n",
"one_cols = []\n",
"two_cols = []\n",
"\n",
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sn\n",
"import random\n",
"import time\n",
"\n",
"from plotly import __version__\n",
"from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot\n",
"\n",
"from sklearn import preprocessing\n",
"\n",
"from pandas import Series,DataFrame\n",
"\n",
"import matplotlib.pyplot as plt\n",
"\n",
"import sklearn.datasets as datasets\n",
"\n",
"#导入机器学习算法模型\n",
"from sklearn.linear_model import Lasso\n",
"from xgboost import XGBRegressor\n",
"\n",
"import statsmodels.api as sm\n",
"try:\n",
" from keras.preprocessing.sequence import TimeseriesGenerator\n",
"except:\n",
" from tensorflow.keras.preprocessing.sequence import TimeseriesGenerator\n",
"\n",
"import plotly.express as px\n",
"import plotly.graph_objects as go\n",
"\n",
"import xgboost as xgb\n",
"from xgboost import plot_importance, plot_tree\n",
"from sklearn.metrics import mean_absolute_error\n",
"from statsmodels.tools.eval_measures import mse,rmse\n",
"from sklearn.model_selection import GridSearchCV\n",
"from xgboost import XGBRegressor\n",
"import warnings\n",
"import pickle\n",
"\n",
"from sklearn.metrics import mean_squared_error\n",
"\n",
"#切割训练数据和样本数据\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"#用于模型评分\n",
"from sklearn.metrics import r2_score\n",
"\n",
"le = preprocessing.LabelEncoder()\n",
"\n",
"# print(__version__) # requires version >= 1.9.0\n",
"\n",
"\n",
"import cufflinks as cf\n",
"cf.go_offline()\n",
"\n",
"random.seed(100)\n",
"\n",
"%matplotlib inline\n",
"\n",
"# 数据获取\n",
"\n",
"def get_head_auth():\n",
" login_res = requests.post(url=login_url, json=login_data, timeout=(3, 5))\n",
" text = json.loads(login_res.text)\n",
" if text[\"status\"]:\n",
" token = text[\"data\"][\"accessToken\"]\n",
" print('获取的token:',token)\n",
" return token\n",
" else:\n",
" print(\"获取认证失败\")\n",
" return None\n",
"\n",
"\n",
"def get_data_value(token, dataItemNoList,date):\n",
" search_data = {\n",
" \"data\": {\n",
" \"date\": date,\n",
" \"dataItemNoList\": dataItemNoList\n",
" },\n",
" \"funcModule\": \"数据项\",\n",
" \"funcOperation\": \"查询\"\n",
" }\n",
" \n",
" \n",
" headers = {\"Authorization\": token}\n",
" search_res = requests.post(url=search_url, headers=headers, json=search_data, timeout=(3, 5))\n",
" print('数据项查询参数search_data')\n",
" print(search_data)\n",
" print('数据项查询结果search_res')\n",
" print(search_res.text)\n",
" \n",
" try:\n",
" search_value = json.loads(search_res.text)[\"data\"]\n",
" \n",
" print(\"数据项查询结果:\", search_value)\n",
" except json.JSONDecodeError as e:\n",
" print(f\"Error decoding JSON: {e}\")\n",
" print(\"Response content:\", search_res.text)\n",
" return None \n",
" if search_value:\n",
" return search_value\n",
" else:\n",
" print(\"今天没有新数据\")\n",
" return search_value\n",
"\n",
"\n",
"def get_head_push_auth():\n",
" login_res = requests.post(url=login_push_url, json=login_push_data, timeout=(3, 5))\n",
" text = json.loads(login_res.text)\n",
" if text[\"status\"]:\n",
" token = text[\"data\"][\"accessToken\"]\n",
" return token\n",
" else:\n",
" print(\"获取认证失败\")\n",
" return None\n",
"\n",
"\n",
"\n",
"def upload_data_to_system(token_push,date):\n",
" data = {\n",
" \"funcModule\": \"数据表信息列表\",\n",
" \"funcOperation\": \"新增\",\n",
" \"data\": [\n",
" {\"dataItemNo\": \"250855713|Forecast_Price|ACN\",\n",
" \"dataDate\": date,\n",
" \"dataStatus\": \"add\",\n",
" \"dataValue\": forecast_price()\n",
" }\n",
"\n",
" ]\n",
" }\n",
" # headers = {\"Authorization\": token_push}\n",
" # res = requests.post(url=upload_url, headers=headers, json=data, timeout=(3, 5))\n",
" # print(res.text)\n",
" print('预测值:',data['data'][0]['dataValue'])\n",
"\n",
" \n",
"# def upload_data_to_system(token):\n",
"# data = {\n",
"# \"funcModule\": \"数据表信息列表\",\n",
"# \"funcOperation\": \"新增\",\n",
"# \"data\": [\n",
"# {\"dataItemNo\": \"C01100036|Forecast_ Price|ACN\",\n",
"# \"dataDate\": '20230706',\n",
"# \"dataStatus\": \"add\",\n",
"# \"dataValue\": 3780.0\n",
"# }\n",
"\n",
"# ]\n",
"# }\n",
"# headers = {\"Authorization\": token}\n",
"# res = requests.post(url=upload_url, headers=headers, json=data, timeout=(3, 5))\n",
"# print(res.text)\n",
"\n",
"price_list = []\n",
" \n",
"def forecast_price():\n",
" # df_test = pd.read_csv('定价模型数据收集0212.csv')\n",
" df_test = pd.read_excel('液化气数据.xlsx')\n",
" df_test.drop([0],inplace=True)\n",
" try:\n",
" df_test['Date']=pd.to_datetime(df_test['Date'], format='%m/%d/%Y',infer_datetime_format=True)\n",
" except:\n",
" df_test['Date']=pd.to_datetime(df_test['Date'], format=r'%Y-%m-%d',infer_datetime_format=True)\n",
"\n",
"\n",
" df_test_1 = df_test\n",
" df_test_1=df_test_1.fillna(df_test.ffill())\n",
" df_test_1=df_test_1.fillna(df_test_1.bfill())\n",
"\n",
" # 选择用于模型训练的列名称\n",
" col_for_training = df_test_1.columns\n",
"\n",
"\n",
"\n",
"\n",
" import joblib\n",
" Best_model_DalyLGPrice = joblib.load(\"日度价格预测_液化气最佳模型.pkl\")\n",
" # 最新的一天为最后一行的数据\n",
" \n",
" df_test_1_Day = df_test_1.tail(1)\n",
" # 移除不需要的列\n",
" df_test_1_Day.index = df_test_1_Day[\"Date\"]\n",
" df_test_1_Day = df_test_1_Day.drop([\"Date\"], axis= 1)\n",
" df_test_1_Day=df_test_1_Day.drop('Price',axis=1)\n",
" df_test_1_Day=df_test_1_Day.dropna()\n",
"\n",
" for col in df_test_1_Day.columns:\n",
" df_test_1_Day[col] = pd.to_numeric(df_test_1_Day[col],errors='coerce')\n",
" #预测今日价格,显示至小数点后两位\n",
" Ypredict_Today=Best_model_DalyLGPrice.predict(df_test_1_Day)\n",
"\n",
" df_test_1_Day['日度预测价格']=Ypredict_Today\n",
" print(df_test_1_Day['日度预测价格'])\n",
" a = df_test_1_Day['日度预测价格']\n",
" a = a[0]\n",
" a = float(a)\n",
" a = round(a,2)\n",
" price_list.append(a)\n",
" return a\n",
"def optimize_Model():\n",
" from sklearn.model_selection import train_test_split\n",
" from sklearn.impute import SimpleImputer\n",
" from sklearn.preprocessing import OrdinalEncoder\n",
" from sklearn.feature_selection import SelectFromModel\n",
" from sklearn.metrics import mean_squared_error, r2_score\n",
" import pandas as pd\n",
"\n",
" pd.set_option('display.max_rows',40) \n",
" pd.set_option('display.max_columns',40) \n",
" df_test = pd.read_excel('液化气数据.xlsx')\n",
" df_test.drop([0],inplace=True)\n",
" try:\n",
" df_test['Date']=pd.to_datetime(df_test['Date'], format='%m/%d/%Y',infer_datetime_format=True)\n",
" except:\n",
" df_test['Date']=pd.to_datetime(df_test['Date'], format=r'%Y-%m-%d',infer_datetime_format=True)\n",
"\n",
" \n",
" #将缺失值补为前一个或者后一个数值\n",
" df_test_1 = df_test\n",
" df_test_1=df_test_1.fillna(df_test.ffill())\n",
" df_test_1=df_test_1.fillna(df_test_1.bfill())\n",
" df_test_1[\"Date\"] = pd.to_datetime(df_test_1[\"Date\"])\n",
" df_test_1.index = df_test_1[\"Date\"]\n",
" df_test_1 = df_test_1.drop([\"Date\"], axis= 1)\n",
" df_test_1 = df_test_1.astype('float')\n",
" \n",
" \n",
" import numpy as np\n",
" import pandas as pd\n",
" from pandas import Series,DataFrame\n",
"\n",
" import matplotlib.pyplot as plt\n",
"\n",
" import sklearn.datasets as datasets\n",
"\n",
" #导入机器学习算法模型\n",
" from sklearn.linear_model import Lasso\n",
" from xgboost import XGBRegressor\n",
"\n",
" import statsmodels.api as sm\n",
" try:\n",
" from keras.preprocessing.sequence import TimeseriesGenerator\n",
" except:\n",
" from tensorflow.keras.preprocessing.sequence import TimeseriesGenerator\n",
"\n",
" import plotly.express as px\n",
" import plotly.graph_objects as go\n",
"\n",
" import xgboost as xgb\n",
" from xgboost import plot_importance, plot_tree\n",
" from sklearn.metrics import mean_absolute_error\n",
" from statsmodels.tools.eval_measures import mse,rmse\n",
" from sklearn.model_selection import GridSearchCV\n",
" from xgboost import XGBRegressor\n",
" import warnings\n",
" import pickle\n",
"\n",
" from sklearn.metrics import mean_squared_error\n",
"\n",
" #切割训练数据和样本数据\n",
" from sklearn.model_selection import train_test_split\n",
"\n",
" #用于模型评分\n",
" from sklearn.metrics import r2_score\n",
"\n",
" dataset1=df_test_1.drop('Price',axis=1)#.astype(float)\n",
"\n",
" y=df_test_1['Price']\n",
"\n",
" x=dataset1 \n",
"\n",
" train = x\n",
" target = y\n",
"\n",
" #切割数据样本集合测试集\n",
" X_train,x_test,y_train,y_true = train_test_split(train,target,test_size=0.2,random_state=0)\n",
"\n",
" #模型缩写\n",
" Lasso = Lasso(random_state=0)\n",
" XGBR = XGBRegressor(random_state=0)\n",
" #训练模型\n",
" Lasso.fit(X_train,y_train)\n",
" XGBR.fit(X_train,y_train)\n",
" #模型拟合\n",
" y_pre_Lasso = Lasso.predict(x_test)\n",
" y_pre_XGBR = XGBR.predict(x_test)\n",
"\n",
" #计算Lasso、XGBR、RandomForestR、AdaBoostR、GradientBoostingR、BaggingRegressor各模型的R²\n",
" Lasso_score = r2_score(y_true,y_pre_Lasso)\n",
" XGBR_score=r2_score(y_true,y_pre_XGBR)\n",
"\n",
" #计算Lasso、XGBR的MSE和RMSE\n",
" Lasso_MSE=mean_squared_error(y_true, y_pre_Lasso)\n",
" XGBR_MSE=mean_squared_error(y_true, y_pre_XGBR)\n",
"\n",
" Lasso_RMSE=np.sqrt(Lasso_MSE)\n",
" XGBR_RMSE=np.sqrt(XGBR_MSE)\n",
" # 将不同模型的不同误差值整合成一个表格\n",
" model_results = pd.DataFrame([['Lasso', Lasso_RMSE, Lasso_score],\n",
" ['XgBoost', XGBR_RMSE, XGBR_score]],\n",
" columns = ['模型(Model)','均方根误差(RMSE)', 'R^2 score'])\n",
" #将模型名称(Model)列设置为索引\n",
" model_results1=model_results.set_index('模型(Model)')\n",
"\n",
" model_results1\n",
" #定义plot_feature_importance函数该函数用于计算特征重要性。此部分代码无需调整\n",
" def plot_feature_importance(importance,names,model_type):\n",
" feature_importance = np.array(importance)\n",
" feature_names = np.array(names)\n",
"\n",
" data={'feature_names':feature_names,'feature_importance':feature_importance}\n",
" fi_df = pd.DataFrame(data)\n",
"\n",
" fi_df.sort_values(by=['feature_importance'], ascending=False,inplace=True)\n",
"\n",
" plt.figure(figsize=(10,8))\n",
" sn.barplot(x=fi_df['feature_importance'], y=fi_df['feature_names'])\n",
"\n",
" plt.title(model_type + \" \"+'FEATURE IMPORTANCE')\n",
" plt.xlabel('FEATURE IMPORTANCE')\n",
" plt.ylabel('FEATURE NAMES')\n",
" from pylab import mpl\n",
" %pylab\n",
" mpl.rcParams['font.sans-serif'] = ['SimHei']\n",
" ## Xgboost 模型参数优化-初步\n",
" #参考: https://juejin.im/post/6844903661013827598 \n",
" #每次调参时备选参数数值以同数量级的1、3、10设置即可比如设置1、3、10或0.1、0.3、1.0或0.01,0.03,0.10即可)\n",
"\n",
" from xgboost import XGBRegressor\n",
" from sklearn.model_selection import GridSearchCV\n",
"\n",
" estimator = XGBRegressor(random_state=0,\n",
" nthread=4,\n",
" seed=0\n",
" )\n",
" parameters = {\n",
" 'max_depth': range (2, 11, 2), # 树的最大深度\n",
" 'n_estimators': range (50, 101, 10), # 迭代次数\n",
" 'learning_rate': [0.01, 0.03, 0.1, 0.3, 0.5, 1]\n",
" }\n",
"\n",
" grid_search_XGB = GridSearchCV(\n",
" estimator=estimator,\n",
" param_grid=parameters,\n",
" # n_jobs = 10,\n",
" cv = 3,\n",
" verbose=True\n",
" )\n",
"\n",
" grid_search_XGB.fit(X_train, y_train)\n",
" #如果电脑在此步骤报错可能是因为计算量太大超过硬件可支持程度可注释掉“n_jobs=10”一行\n",
"\n",
" best_parameters = grid_search_XGB.best_estimator_.get_params()\n",
" y_pred = grid_search_XGB.predict(x_test)\n",
"\n",
" op_XGBR_score = r2_score(y_true,y_pred)\n",
" op_XGBR_MSE= mean_squared_error(y_true, y_pred)\n",
" op_XGBR_RMSE= np.sqrt(op_XGBR_MSE)\n",
"\n",
" model_results2 = pd.DataFrame([['Optimized_Xgboost', op_XGBR_RMSE, op_XGBR_score]],\n",
" columns = ['模型(Model)', '均方根误差(RMSE)', 'R^2 score'])\n",
" model_results2=model_results2.set_index('模型(Model)')\n",
"\n",
" try:\n",
" results = model_results1.append(model_results2, ignore_index = False)\n",
" except:\n",
" results = pd.concat([model_results1,model_results2],ignore_index=True)\n",
" import pickle\n",
"\n",
" Pkl_Filename = \"日度价格预测_液化气最佳模型.pkl\" \n",
"\n",
" with open(Pkl_Filename, 'wb') as file: \n",
" pickle.dump(grid_search_XGB, file)\n",
"\n",
"def read_xls_data():\n",
" \"\"\"获取特征项ID\"\"\"\n",
" global one_cols, two_cols\n",
" # 使用pandas读取Excel文件\n",
" df = pd.read_excel(read_file_path_name, header=None) # 不自动识别列名\n",
" # 获取第二行数据索引为1\n",
" one_cols = df.iloc[1].tolist()[1:]\n",
" print(f'获取到的数据项ID{one_cols}')\n",
"\n",
"\n",
"def start(date=''):\n",
" \"\"\"获取当日数据\"\"\"\n",
" read_xls_data()\n",
" token = get_head_auth()\n",
" if not token:\n",
" return\n",
" \n",
" cur_time,cur_time2 = getNow(date)\n",
" print(f\"获取{cur_time}数据\")\n",
" datas = get_data_value(token, one_cols,date=cur_time)\n",
" if not datas:\n",
" return\n",
"\n",
" append_rows = [cur_time2]\n",
" dataItemNo_dataValue = {}\n",
" for data_value in datas:\n",
" if \"dataValue\" not in data_value:\n",
" print(data_value)\n",
" dataItemNo_dataValue[data_value[\"dataItemNo\"]] = \"\"\n",
" else:\n",
" dataItemNo_dataValue[data_value[\"dataItemNo\"]] = data_value[\"dataValue\"]\n",
" \n",
" for value in one_cols:\n",
" if value in dataItemNo_dataValue:\n",
" append_rows.append(dataItemNo_dataValue[value])\n",
" else:\n",
" append_rows.append(\"\")\n",
" print('添加的行:',append_rows)\n",
" save_xls_2(append_rows)\n",
"\n",
"\n",
"def getNow(date='', offset=0):\n",
" \"\"\"生成指定日期的两种格式字符串\n",
" Args:\n",
" date: 支持多种输入类型:\n",
" - datetime对象\n",
" - 字符串格式(支持'%Y-%m-%d'和'%Y%m%d'\n",
" - 空字符串表示当前日期\n",
" offset: 日期偏移天数\n",
" Returns:\n",
" tuple: (紧凑日期字符串, 标准日期字符串)\n",
" \"\"\"\n",
" # 日期解析逻辑\n",
" if isinstance(date, datetime):\n",
" now = date\n",
" else:\n",
" now = datetime.now()\n",
" if date:\n",
" # 尝试多种日期格式解析\n",
" for fmt in ('%Y-%m-%d', '%Y%m%d', '%Y/%m/%d'):\n",
" try:\n",
" now = datetime.strptime(str(date), fmt)\n",
" break\n",
" except ValueError:\n",
" continue\n",
" else:\n",
" raise ValueError(f\"无法解析的日期格式: {date}\")\n",
"\n",
" # 应用日期偏移\n",
" now = now - timedelta(days=offset)\n",
" \n",
" # 统一格式化输出\n",
" date_str = now.strftime(\"%Y-%m-%d\")\n",
" compact_date = date_str.replace(\"-\", \"\")\n",
" return compact_date, date_str\n",
"\n",
"def start_1(date=''):\n",
" \"\"\"补充昨日数据\"\"\"\n",
" read_xls_data()\n",
" token = get_head_auth()\n",
" if not token:\n",
" return\n",
" \n",
" cur_time,cur_time2 = getNow(date,offset=1)\n",
" print(f\"补充{cur_time}数据\")\n",
" datas = get_data_value(token, one_cols,date=cur_time)\n",
" if not datas:\n",
" print(f\"{cur_time}没有数据\")\n",
" return\n",
"\n",
" append_rows = [cur_time2]\n",
" dataItemNo_dataValue = {}\n",
" for data_value in datas:\n",
" if \"dataValue\" not in data_value:\n",
" print(data_value)\n",
" dataItemNo_dataValue[data_value[\"dataItemNo\"]] = \"\"\n",
" else:\n",
" dataItemNo_dataValue[data_value[\"dataItemNo\"]] = data_value[\"dataValue\"]\n",
" \n",
" for value in one_cols:\n",
" if value in dataItemNo_dataValue:\n",
" append_rows.append(dataItemNo_dataValue[value])\n",
" else:\n",
" append_rows.append(\"\")\n",
" print('添加的行:',append_rows)\n",
" save_xls_2(append_rows)\n",
"\n",
"\n",
"def save_xls_2(append_rows):\n",
" \"\"\"保存或更新数据到Excel文件\n",
" 参数:\n",
" append_rows (list): 需要追加/更新的数据行,格式为[日期, 数据项1, 数据项2,...]\n",
" \"\"\"\n",
" try:\n",
" # 读取现有数据(假设第一行为列名)\n",
" df = pd.read_excel('液化气数据.xlsx', sheet_name=0)\n",
" # 转换append_rows为DataFrame\n",
" append_rows = pd.DataFrame([append_rows],columns=df.columns)\n",
" # 创建新数据行\n",
" new_date = append_rows['Date'].values[0]\n",
" \n",
" dates = df['Date'].to_list()\n",
" # 判断日期是否存在\n",
" if new_date in dates:\n",
" # 找到日期所在行的索引\n",
" date_mask = df['Date'] == new_date\n",
" # 存在则更新数据\n",
" df.loc[date_mask] = append_rows.values\n",
" print(f\"更新 {new_date} 数据\")\n",
" else:\n",
" # 不存在则追加数据\n",
" df = pd.concat([df, append_rows], ignore_index=True)\n",
" print(df.head())\n",
" print(df.tail())\n",
" print(f\"插入 {new_date} 新数据\")\n",
" \n",
" # 保存更新后的数据\n",
" df.to_excel('液化气数据.xlsx', index=False, engine='openpyxl')\n",
" \n",
" except FileNotFoundError:\n",
" # 如果文件不存在则创建新文件\n",
" pd.DataFrame([append_rows]).to_excel('液化气数据.xlsx', index=False, engine='openpyxl')\n",
" except Exception as e:\n",
" print(f\"保存数据时发生错误: {str(e)}\")\n",
"\n",
"def check_data(dataItemNo):\n",
" token = get_head_auth()\n",
" if not token:\n",
" return\n",
"\n",
" datas = get_data_value(token, dataItemNo)\n",
" if not datas:\n",
" return\n",
"\n",
"def get_queryDataListItemNos_value(token, url, dataItemNoList, dateStart, dateEnd):\n",
"\n",
" search_data = {\n",
" \"funcModule\": \"数据项\",\n",
" \"funcOperation\": \"查询\",\n",
" \"data\": {\n",
" \"dateStart\": dateStart,\n",
" \"dateEnd\": dateEnd,\n",
" \"dataItemNoList\": dataItemNoList # 数据项编码,代表 brent最低价和最高价\n",
" }\n",
" }\n",
"\n",
" headers = {\"Authorization\": token}\n",
" search_res = requests.post(url=url, headers=headers, json=search_data, timeout=(3, 5))\n",
" search_value = json.loads(search_res.text)[\"data\"]\n",
" if search_value:\n",
" return search_value\n",
" else:\n",
" return None\n",
"\n",
"def save_queryDataListItemNos_xls(data_df,dataItemNoList):\n",
" current_year_month = datetime.now().strftime('%Y-%m')\n",
" grouped = data_df.groupby(\"dataDate\")\n",
"\n",
" # 使用openpyxl打开xlsx文件\n",
" from openpyxl import load_workbook\n",
" workbook = load_workbook('液化气数据.xlsx')\n",
"\n",
" # 创建新工作簿\n",
" new_workbook = load_workbook('液化气数据.xlsx')\n",
" \n",
" for sheetname in workbook.sheetnames:\n",
" sheet = workbook[sheetname]\n",
" new_sheet = new_workbook[sheetname]\n",
" \n",
" current_year_month_row = 0\n",
" # 查找当前月份数据起始行\n",
" for row_idx, row in enumerate(sheet.iter_rows(values_only=True), 1):\n",
" if str(row[0]).startswith(current_year_month):\n",
" current_year_month_row += 1\n",
"\n",
" # 追加新数据\n",
" if sheetname == workbook.sheetnames[0]:\n",
" start_row = sheet.max_row - current_year_month_row + 1\n",
" for row_idx, (date, group) in enumerate(grouped, start=start_row):\n",
" new_sheet.cell(row=row_idx, column=1, value=date)\n",
" for j, dataItemNo in enumerate(dataItemNoList, start=2):\n",
" if group[group[\"dataItemNo\"] == dataItemNo][\"dataValue\"].values:\n",
" new_sheet.cell(row=row_idx, column=j, \n",
" value=group[group[\"dataItemNo\"] == dataItemNo][\"dataValue\"].values[0])\n",
"\n",
" # 保存修改后的xlsx文件\n",
" new_workbook.save(\"液化气数据.xlsx\")\n",
"\n",
"\n",
"def queryDataListItemNos(date=None,token=None):\n",
" df = pd.read_excel('液化气数据.xlsx')\n",
" dataItemNoList = df.iloc[0].tolist()[1:]\n",
" if token is None:\n",
" token = get_head_auth()\n",
" if not token:\n",
" print('token获取失败')\n",
" return\n",
" # 获取当前日期\n",
" if date is None:\n",
" current_date = datetime.now()\n",
" else:\n",
" current_date = date\n",
" # 获取当月1日\n",
" first_day_of_month = current_date.replace(day=1)\n",
" # 格式化为 YYYYMMDD 格式\n",
" dateEnd = current_date.strftime('%Y%m%d')\n",
" dateStart = first_day_of_month.strftime('%Y%m%d')\n",
" search_value = get_queryDataListItemNos_value(token, queryDataListItemNos_url, dataItemNoList, dateStart, dateEnd)\n",
" data_df = pd.DataFrame(search_value)\n",
" data_df[\"dataDate\"] = pd.to_datetime(data_df[\"dataDate\"])\n",
" data_df[\"dataDate\"] = data_df[\"dataDate\"].dt.strftime('%Y-%m-%d')\n",
" save_queryDataListItemNos_xls(data_df,dataItemNoList)\n",
" print('当月数据更新完成')\n",
"\n",
"\n",
"\n",
"def main(start_date=None,token=None,token_push=None):\n",
" if start_date is None:\n",
" start_date = datetime.now()\n",
" if token is None:\n",
" token = get_head_auth()\n",
" if token_push is None:\n",
" token_push = get_head_push_auth()\n",
" date = start_date.strftime('%Y%m%d')\n",
" print(date)\n",
" # 更新当月数据\n",
" queryDataListItemNos(start_date,token)\n",
" # 更新当日数据\n",
" # start(date)\n",
" # 训练模型\n",
" optimize_Model()\n",
" # 预测&上传预测结果\n",
" upload_data_to_system(token_push,start_date)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"\n",
"# if __name__ == \"__main__\":\n",
"# print('运行中')\n",
"# # 需要单独运行放开\n",
"# # start()\n",
"# # start_1(date='2025-01-22')\n",
"# # start_1()\n",
"\n",
"# # 每天定时12点运行\n",
"# while True:\n",
"# try:\n",
"# # 获取当前时间\n",
"# current_time = time.strftime(\"%H:%M:%S\", time.localtime())\n",
"# current_time_1 = time.strftime(\"%H:%M:%S\", time.localtime())\n",
"# # print(current_time_1)\n",
"\n",
"\n",
"\n",
"\n",
"# # 判断当前时间是否为执行任务的时间点\n",
"# if current_time == \"09:15:00\":\n",
"# print(\"执行定时任务\")\n",
" # start()\n",
"\n",
"# # 休眠1秒钟避免过多占用CPU资源\n",
"# time.sleep(1)\n",
"\n",
"# elif current_time_1 == \"20:00:00\":\n",
"# print(\"更新数据\")\n",
"# start_1()\n",
"# time.sleep(1)\n",
"# except:\n",
"# print('执行错误')\n",
"# time.sleep(1)\n",
"\n",
"\n",
"# # 检测数据准确性, 需要检测放开\n",
"# # check_data(\"100028098|LISTING_PRICE\")\n",
"# # check_data(\"9137070016544622XB|DAY_Yield\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"运行中ing...\n",
"获取的token: eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJhcGlfZGV2IiwidGgiOiI4YTQ1NzdkYmQ5MTk2NzU3NThkNTc5OTlhMWU4OTFmZSIsImx0IjoiYXBpIiwiaXNzIjoiIiwidG0iOiJQQyIsImV4cCI6MTc0NDE5ODg0NywianRpIjoiZmJlMmI4MzA5NzFmNDBhMzhiZTA5YTZjMDEyZjU4YmQifQ.rGLp0UBfeu5JmoYXbGSgCpkrO2QnlAx8hFbbbDDXC8I\n",
"20250409\n",
" dataDate dataItemNo dataValue\n",
"0 2025-04-01 100028046|LISTING_PRICE 8208.0\n",
"1 2025-04-02 100028046|LISTING_PRICE 8244.0\n",
"2 2025-04-03 100028046|LISTING_PRICE 8244.0\n",
"3 2025-04-04 100028046|LISTING_PRICE 8165.0\n",
"4 2025-04-05 100028046|LISTING_PRICE 8114.0\n",
".. ... ... ...\n",
"183 2025-04-07 YHQMXBB|C01100008|STRIKE_PRICE 5180.0\n",
"184 2025-04-02 YHQMXBB|C01100008|STRIKE_PRICE 5310.0\n",
"185 2025-04-01 YHQMXBB|C01100008|STRIKE_PRICE 5260.0\n",
"186 2025-04-04 YHQMXBB|C01100008|STRIKE_PRICE 5230.0\n",
"187 2025-04-05 YHQMXBB|C01100008|STRIKE_PRICE 5180.0\n",
"\n",
"[188 rows x 3 columns]\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_9964\\3261286938.py:614: DeprecationWarning:\n",
"\n",
"The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty.\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"当月数据更新完成\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_9964\\3261286938.py:255: UserWarning:\n",
"\n",
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
"\n",
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_9964\\3261286938.py:257: UserWarning:\n",
"\n",
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Using matplotlib backend: QtAgg\n",
"%pylab is deprecated, use %matplotlib inline and import the required libraries.\n",
"Populating the interactive namespace from numpy and matplotlib\n",
"Fitting 3 folds for each of 180 candidates, totalling 540 fits\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"d:\\ProgramData\\anaconda3\\Lib\\site-packages\\IPython\\core\\magics\\pylab.py:162: UserWarning:\n",
"\n",
"pylab import has clobbered these variables: ['plot', 'random', '__version__', 'datetime']\n",
"`%matplotlib` prevents importing * from pylab and numpy\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Date\n",
"2025-04-09 5179.792969\n",
"Name: 日度预测价格, dtype: float32\n",
"预测值: 5179.79\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_9964\\3261286938.py:203: UserWarning:\n",
"\n",
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
"\n",
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_9964\\3261286938.py:205: UserWarning:\n",
"\n",
"The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n",
"\n",
"C:\\Users\\EDY\\AppData\\Local\\Temp\\ipykernel_9964\\3261286938.py:237: FutureWarning:\n",
"\n",
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
"\n"
]
}
],
"source": [
"\n",
"if __name__ == \"__main__\":\n",
" print(\"运行中ing...\")\n",
" # 每天定时12点运行\n",
" # while True:\n",
" # # 获取当前时间\n",
" # current_time = time.strftime(\"%H:%M:%S\", time.localtime())\n",
" # try:\n",
" # # 判断当前时间是否为执行任务的时间点\n",
" # if current_time == \"12:00:00\":\n",
" # print(\"执行定时任务\")\n",
" # main()\n",
" # elif current_time == \"20:00:00\":\n",
" # start_1()\n",
" # time.sleep(1)\n",
" # except:\n",
" # print(f\"{current_time}执行失败\")\n",
"\n",
" # 检测数据准确性, 需要检测放开\n",
" # check_data(\"100028098|LISTING_PRICE\")\n",
" # check_data(\"9137070016544622XB|DAY_Yield\")\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"# start_date = datetime(2025, 4, 2)\n",
"# end_date = datetime(2025, 4, 3)\n",
"# token = get_head_auth()\n",
"\n",
"# while start_date < end_date:\n",
"# date = start_date.strftime('%Y%m%d')\n",
"# date2 = start_date.strftime('%Y-%m-%d')\n",
"# queryDataListItemNos(date=start_date,token=token)\n",
"# updateYesterdayExcelData(date=date2,token=token)\n",
"# start(date)\n",
"# # # time.sleep(1)\n",
"# # start_1(start_date)\n",
"# start_date += timedelta(days=1)\n",
"# time.sleep(5)\n",
"\n",
"# # print(price_list)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
}
},
"nbformat": 4,
"nbformat_minor": 4
}