664 lines
21 KiB
Python
664 lines
21 KiB
Python
import requests
|
||
import json
|
||
|
||
from datetime import datetime,timedelta
|
||
|
||
# 变量定义
|
||
login_url = "http://10.200.32.39/jingbo-api/api/server/login"
|
||
search_url = "http://10.200.32.39/jingbo-api/api/warehouse/dwDataItem/queryByItemNos"
|
||
queryDataListItemNos_url = "http://10.200.32.39/jingbo-api/api/warehouse/dwDataItem/queryDataListItemNos"
|
||
|
||
|
||
login_push_url = "http://10.200.32.39/jingbo-api/api/server/login"
|
||
upload_url = "http://10.200.32.39/jingbo-api/api/dw/dataValue/pushDataValueList"
|
||
|
||
login_data = {
|
||
"data": {
|
||
"account": "api_dev",
|
||
"password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=",
|
||
"tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
|
||
"terminal": "API"
|
||
},
|
||
"funcModule": "API",
|
||
"funcOperation": "获取token"
|
||
}
|
||
|
||
login_push_data = {
|
||
"data": {
|
||
"account": "api_dev",
|
||
"password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=",
|
||
"tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
|
||
"terminal": "API"
|
||
},
|
||
"funcModule": "API",
|
||
"funcOperation": "获取token"
|
||
}
|
||
|
||
read_file_path_name = "液化气数据.xlsx"
|
||
one_cols = []
|
||
two_cols = []
|
||
|
||
import pandas as pd
|
||
import numpy as np
|
||
import matplotlib.pyplot as plt
|
||
import seaborn as sn
|
||
import random
|
||
import time
|
||
|
||
from plotly import __version__
|
||
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
|
||
|
||
from sklearn import preprocessing
|
||
|
||
from pandas import Series,DataFrame
|
||
|
||
import matplotlib.pyplot as plt
|
||
|
||
import sklearn.datasets as datasets
|
||
|
||
#导入机器学习算法模型
|
||
from sklearn.linear_model import Lasso
|
||
from xgboost import XGBRegressor
|
||
|
||
import statsmodels.api as sm
|
||
try:
|
||
from keras.preprocessing.sequence import TimeseriesGenerator
|
||
except:
|
||
from tensorflow.keras.preprocessing.sequence import TimeseriesGenerator
|
||
|
||
import plotly.express as px
|
||
import plotly.graph_objects as go
|
||
|
||
import xgboost as xgb
|
||
from xgboost import plot_importance, plot_tree
|
||
from sklearn.metrics import mean_absolute_error
|
||
from statsmodels.tools.eval_measures import mse,rmse
|
||
from sklearn.model_selection import GridSearchCV
|
||
from xgboost import XGBRegressor
|
||
import warnings
|
||
import pickle
|
||
|
||
from sklearn.metrics import mean_squared_error
|
||
|
||
#切割训练数据和样本数据
|
||
from sklearn.model_selection import train_test_split
|
||
|
||
#用于模型评分
|
||
from sklearn.metrics import r2_score
|
||
|
||
le = preprocessing.LabelEncoder()
|
||
|
||
# print(__version__) # requires version >= 1.9.0
|
||
|
||
|
||
import cufflinks as cf
|
||
cf.go_offline()
|
||
|
||
random.seed(100)
|
||
|
||
|
||
# 数据获取
|
||
|
||
def get_head_auth():
|
||
login_res = requests.post(url=login_url, json=login_data, timeout=(3, 5))
|
||
text = json.loads(login_res.text)
|
||
if text["status"]:
|
||
token = text["data"]["accessToken"]
|
||
print('获取的token:',token)
|
||
return token
|
||
else:
|
||
print("获取认证失败")
|
||
return None
|
||
|
||
|
||
def get_data_value(token, dataItemNoList,date):
|
||
search_data = {
|
||
"data": {
|
||
"date": date,
|
||
"dataItemNoList": dataItemNoList
|
||
},
|
||
"funcModule": "数据项",
|
||
"funcOperation": "查询"
|
||
}
|
||
|
||
|
||
headers = {"Authorization": token}
|
||
search_res = requests.post(url=search_url, headers=headers, json=search_data, timeout=(3, 5))
|
||
print('数据项查询参数search_data:')
|
||
print(search_data)
|
||
print('数据项查询结果search_res:')
|
||
print(search_res.text)
|
||
|
||
try:
|
||
search_value = json.loads(search_res.text)["data"]
|
||
|
||
print("数据项查询结果:", search_value)
|
||
except json.JSONDecodeError as e:
|
||
print(f"Error decoding JSON: {e}")
|
||
print("Response content:", search_res.text)
|
||
return None
|
||
if search_value:
|
||
return search_value
|
||
else:
|
||
print("今天没有新数据")
|
||
return search_value
|
||
|
||
|
||
def get_head_push_auth():
|
||
login_res = requests.post(url=login_push_url, json=login_push_data, timeout=(3, 5))
|
||
text = json.loads(login_res.text)
|
||
if text["status"]:
|
||
token = text["data"]["accessToken"]
|
||
return token
|
||
else:
|
||
print("获取认证失败")
|
||
return None
|
||
|
||
|
||
|
||
def upload_data_to_system(token_push,date):
|
||
data = {
|
||
"funcModule": "数据表信息列表",
|
||
"funcOperation": "新增",
|
||
"data": [
|
||
{"dataItemNo": "250855713|Forecast_Price|ACN",
|
||
"dataDate": getNow(date=date)[0],
|
||
"dataStatus": "add",
|
||
"dataValue": forecast_price()
|
||
}
|
||
|
||
]
|
||
}
|
||
headers = {"Authorization": token_push}
|
||
res = requests.post(url=upload_url, headers=headers, json=data, timeout=(3, 5))
|
||
print(res.text)
|
||
print('预测值:',data['data'][0]['dataValue'])
|
||
|
||
|
||
price_list = []
|
||
|
||
def forecast_price():
|
||
# df_test = pd.read_csv('定价模型数据收集0212.csv')
|
||
df_test = pd.read_excel('液化气数据.xlsx')
|
||
df_test.drop([0],inplace=True)
|
||
try:
|
||
df_test['Date']=pd.to_datetime(df_test['Date'], format='%m/%d/%Y',infer_datetime_format=True)
|
||
except:
|
||
df_test['Date']=pd.to_datetime(df_test['Date'], format=r'%Y-%m-%d',infer_datetime_format=True)
|
||
|
||
|
||
df_test_1 = df_test
|
||
df_test_1=df_test_1.fillna(df_test.ffill())
|
||
df_test_1=df_test_1.fillna(df_test_1.bfill())
|
||
|
||
# 选择用于模型训练的列名称
|
||
col_for_training = df_test_1.columns
|
||
|
||
|
||
|
||
|
||
import joblib
|
||
Best_model_DalyLGPrice = joblib.load("日度价格预测_液化气最佳模型.pkl")
|
||
# 最新的一天为最后一行的数据
|
||
|
||
df_test_1_Day = df_test_1.tail(1)
|
||
# 移除不需要的列
|
||
df_test_1_Day.index = df_test_1_Day["Date"]
|
||
df_test_1_Day = df_test_1_Day.drop(["Date"], axis= 1)
|
||
df_test_1_Day=df_test_1_Day.drop('Price',axis=1)
|
||
df_test_1_Day=df_test_1_Day.dropna()
|
||
|
||
for col in df_test_1_Day.columns:
|
||
df_test_1_Day[col] = pd.to_numeric(df_test_1_Day[col],errors='coerce')
|
||
#预测今日价格,显示至小数点后两位
|
||
Ypredict_Today=Best_model_DalyLGPrice.predict(df_test_1_Day)
|
||
|
||
df_test_1_Day['日度预测价格']=Ypredict_Today
|
||
print(df_test_1_Day['日度预测价格'])
|
||
a = df_test_1_Day['日度预测价格']
|
||
a = a[0]
|
||
a = float(a)
|
||
a = round(a,2)
|
||
price_list.append(a)
|
||
return a
|
||
def optimize_Model():
|
||
from sklearn.model_selection import train_test_split
|
||
from sklearn.impute import SimpleImputer
|
||
from sklearn.preprocessing import OrdinalEncoder
|
||
from sklearn.feature_selection import SelectFromModel
|
||
from sklearn.metrics import mean_squared_error, r2_score
|
||
import pandas as pd
|
||
|
||
pd.set_option('display.max_rows',40)
|
||
pd.set_option('display.max_columns',40)
|
||
df_test = pd.read_excel('液化气数据.xlsx')
|
||
df_test.drop([0],inplace=True)
|
||
try:
|
||
df_test['Date']=pd.to_datetime(df_test['Date'], format='%m/%d/%Y',infer_datetime_format=True)
|
||
except:
|
||
df_test['Date']=pd.to_datetime(df_test['Date'], format=r'%Y-%m-%d',infer_datetime_format=True)
|
||
|
||
|
||
#将缺失值补为前一个或者后一个数值
|
||
df_test_1 = df_test
|
||
df_test_1=df_test_1.fillna(df_test.ffill())
|
||
df_test_1=df_test_1.fillna(df_test_1.bfill())
|
||
df_test_1["Date"] = pd.to_datetime(df_test_1["Date"])
|
||
df_test_1.index = df_test_1["Date"]
|
||
df_test_1 = df_test_1.drop(["Date"], axis= 1)
|
||
df_test_1 = df_test_1.astype('float')
|
||
|
||
|
||
import numpy as np
|
||
import pandas as pd
|
||
from pandas import Series,DataFrame
|
||
|
||
import matplotlib.pyplot as plt
|
||
|
||
import sklearn.datasets as datasets
|
||
|
||
#导入机器学习算法模型
|
||
from sklearn.linear_model import Lasso
|
||
from xgboost import XGBRegressor
|
||
|
||
import statsmodels.api as sm
|
||
try:
|
||
from keras.preprocessing.sequence import TimeseriesGenerator
|
||
except:
|
||
from tensorflow.keras.preprocessing.sequence import TimeseriesGenerator
|
||
|
||
import plotly.express as px
|
||
import plotly.graph_objects as go
|
||
|
||
import xgboost as xgb
|
||
from xgboost import plot_importance, plot_tree
|
||
from sklearn.metrics import mean_absolute_error
|
||
from statsmodels.tools.eval_measures import mse,rmse
|
||
from sklearn.model_selection import GridSearchCV
|
||
from xgboost import XGBRegressor
|
||
import warnings
|
||
import pickle
|
||
|
||
from sklearn.metrics import mean_squared_error
|
||
|
||
#切割训练数据和样本数据
|
||
from sklearn.model_selection import train_test_split
|
||
|
||
#用于模型评分
|
||
from sklearn.metrics import r2_score
|
||
|
||
dataset1=df_test_1.drop('Price',axis=1)#.astype(float)
|
||
|
||
y=df_test_1['Price']
|
||
|
||
x=dataset1
|
||
|
||
train = x
|
||
target = y
|
||
|
||
#切割数据样本集合测试集
|
||
X_train,x_test,y_train,y_true = train_test_split(train,target,test_size=0.2,random_state=0)
|
||
|
||
#模型缩写
|
||
Lasso = Lasso(random_state=0)
|
||
XGBR = XGBRegressor(random_state=0)
|
||
#训练模型
|
||
Lasso.fit(X_train,y_train)
|
||
XGBR.fit(X_train,y_train)
|
||
#模型拟合
|
||
y_pre_Lasso = Lasso.predict(x_test)
|
||
y_pre_XGBR = XGBR.predict(x_test)
|
||
|
||
#计算Lasso、XGBR、RandomForestR、AdaBoostR、GradientBoostingR、BaggingRegressor各模型的R²
|
||
Lasso_score = r2_score(y_true,y_pre_Lasso)
|
||
XGBR_score=r2_score(y_true,y_pre_XGBR)
|
||
|
||
#计算Lasso、XGBR的MSE和RMSE
|
||
Lasso_MSE=mean_squared_error(y_true, y_pre_Lasso)
|
||
XGBR_MSE=mean_squared_error(y_true, y_pre_XGBR)
|
||
|
||
Lasso_RMSE=np.sqrt(Lasso_MSE)
|
||
XGBR_RMSE=np.sqrt(XGBR_MSE)
|
||
# 将不同模型的不同误差值整合成一个表格
|
||
model_results = pd.DataFrame([['Lasso', Lasso_RMSE, Lasso_score],
|
||
['XgBoost', XGBR_RMSE, XGBR_score]],
|
||
columns = ['模型(Model)','均方根误差(RMSE)', 'R^2 score'])
|
||
#将模型名称(Model)列设置为索引
|
||
model_results1=model_results.set_index('模型(Model)')
|
||
|
||
model_results1
|
||
#定义plot_feature_importance函数,该函数用于计算特征重要性。此部分代码无需调整
|
||
def plot_feature_importance(importance,names,model_type):
|
||
feature_importance = np.array(importance)
|
||
feature_names = np.array(names)
|
||
|
||
data={'feature_names':feature_names,'feature_importance':feature_importance}
|
||
fi_df = pd.DataFrame(data)
|
||
|
||
fi_df.sort_values(by=['feature_importance'], ascending=False,inplace=True)
|
||
|
||
plt.figure(figsize=(10,8))
|
||
sn.barplot(x=fi_df['feature_importance'], y=fi_df['feature_names'])
|
||
|
||
plt.title(model_type + " "+'FEATURE IMPORTANCE')
|
||
plt.xlabel('FEATURE IMPORTANCE')
|
||
plt.ylabel('FEATURE NAMES')
|
||
from pylab import mpl
|
||
mpl.rcParams['font.sans-serif'] = ['SimHei']
|
||
## Xgboost 模型参数优化-初步
|
||
#参考: https://juejin.im/post/6844903661013827598
|
||
#每次调参时,备选参数数值以同数量级的1、3、10设置即可(比如设置1、3、10,或0.1、0.3、1.0,或0.01,0.03,0.10即可)
|
||
|
||
from xgboost import XGBRegressor
|
||
from sklearn.model_selection import GridSearchCV
|
||
|
||
estimator = XGBRegressor(random_state=0,
|
||
nthread=4,
|
||
seed=0
|
||
)
|
||
parameters = {
|
||
'max_depth': range (2, 11, 2), # 树的最大深度
|
||
'n_estimators': range (50, 101, 10), # 迭代次数
|
||
'learning_rate': [0.01, 0.03, 0.1, 0.3, 0.5, 1]
|
||
}
|
||
|
||
grid_search_XGB = GridSearchCV(
|
||
estimator=estimator,
|
||
param_grid=parameters,
|
||
# n_jobs = 10,
|
||
cv = 3,
|
||
verbose=True
|
||
)
|
||
|
||
grid_search_XGB.fit(X_train, y_train)
|
||
#如果电脑在此步骤报错,可能是因为计算量太大,超过硬件可支持程度,可注释掉“n_jobs=10”一行
|
||
|
||
best_parameters = grid_search_XGB.best_estimator_.get_params()
|
||
y_pred = grid_search_XGB.predict(x_test)
|
||
|
||
op_XGBR_score = r2_score(y_true,y_pred)
|
||
op_XGBR_MSE= mean_squared_error(y_true, y_pred)
|
||
op_XGBR_RMSE= np.sqrt(op_XGBR_MSE)
|
||
|
||
model_results2 = pd.DataFrame([['Optimized_Xgboost', op_XGBR_RMSE, op_XGBR_score]],
|
||
columns = ['模型(Model)', '均方根误差(RMSE)', 'R^2 score'])
|
||
model_results2=model_results2.set_index('模型(Model)')
|
||
|
||
try:
|
||
results = model_results1.append(model_results2, ignore_index = False)
|
||
except:
|
||
results = pd.concat([model_results1,model_results2],ignore_index=True)
|
||
import pickle
|
||
|
||
Pkl_Filename = "日度价格预测_液化气最佳模型.pkl"
|
||
|
||
with open(Pkl_Filename, 'wb') as file:
|
||
pickle.dump(grid_search_XGB, file)
|
||
|
||
def read_xls_data():
|
||
"""获取特征项ID"""
|
||
global one_cols, two_cols
|
||
# 使用pandas读取Excel文件
|
||
df = pd.read_excel(read_file_path_name, header=None) # 不自动识别列名
|
||
# 获取第二行数据(索引为1)
|
||
one_cols = df.iloc[1].tolist()[1:]
|
||
print(f'获取到的数据项ID{one_cols}')
|
||
|
||
|
||
def start(date=''):
|
||
"""获取当日数据"""
|
||
read_xls_data()
|
||
token = get_head_auth()
|
||
if not token:
|
||
return
|
||
|
||
cur_time,cur_time2 = getNow(date)
|
||
print(f"获取{cur_time}数据")
|
||
datas = get_data_value(token, one_cols,date=cur_time)
|
||
if not datas:
|
||
return
|
||
|
||
append_rows = [cur_time2]
|
||
dataItemNo_dataValue = {}
|
||
for data_value in datas:
|
||
if "dataValue" not in data_value:
|
||
print(data_value)
|
||
dataItemNo_dataValue[data_value["dataItemNo"]] = ""
|
||
else:
|
||
dataItemNo_dataValue[data_value["dataItemNo"]] = data_value["dataValue"]
|
||
|
||
for value in one_cols:
|
||
if value in dataItemNo_dataValue:
|
||
append_rows.append(dataItemNo_dataValue[value])
|
||
else:
|
||
append_rows.append("")
|
||
print('添加的行:',append_rows)
|
||
save_xls_2(append_rows)
|
||
|
||
|
||
def getNow(date='', offset=0):
|
||
"""生成指定日期的两种格式字符串
|
||
Args:
|
||
date: 支持多种输入类型:
|
||
- datetime对象
|
||
- 字符串格式(支持'%Y-%m-%d'和'%Y%m%d')
|
||
- 空字符串表示当前日期
|
||
offset: 日期偏移天数
|
||
Returns:
|
||
tuple: (紧凑日期字符串, 标准日期字符串)
|
||
"""
|
||
# 日期解析逻辑
|
||
from datetime import datetime,timedelta
|
||
if isinstance(date, datetime):
|
||
now = date
|
||
else:
|
||
now = datetime.now()
|
||
if date:
|
||
# 尝试多种日期格式解析
|
||
for fmt in ('%Y-%m-%d', '%Y%m%d', '%Y/%m/%d'):
|
||
try:
|
||
now = datetime.strptime(str(date), fmt)
|
||
break
|
||
except ValueError:
|
||
continue
|
||
else:
|
||
raise ValueError(f"无法解析的日期格式: {date}")
|
||
|
||
# 应用日期偏移
|
||
now = now - timedelta(days=offset)
|
||
|
||
# 统一格式化输出
|
||
date_str = now.strftime("%Y-%m-%d")
|
||
compact_date = date_str.replace("-", "")
|
||
return compact_date, date_str
|
||
|
||
def start_1(date=''):
|
||
"""补充昨日数据"""
|
||
read_xls_data()
|
||
token = get_head_auth()
|
||
if not token:
|
||
return
|
||
|
||
cur_time,cur_time2 = getNow(date,offset=1)
|
||
print(f"补充{cur_time}数据")
|
||
datas = get_data_value(token, one_cols,date=cur_time)
|
||
if not datas:
|
||
print(f"{cur_time}没有数据")
|
||
return
|
||
|
||
append_rows = [cur_time2]
|
||
dataItemNo_dataValue = {}
|
||
for data_value in datas:
|
||
if "dataValue" not in data_value:
|
||
print(data_value)
|
||
dataItemNo_dataValue[data_value["dataItemNo"]] = ""
|
||
else:
|
||
dataItemNo_dataValue[data_value["dataItemNo"]] = data_value["dataValue"]
|
||
|
||
for value in one_cols:
|
||
if value in dataItemNo_dataValue:
|
||
append_rows.append(dataItemNo_dataValue[value])
|
||
else:
|
||
append_rows.append("")
|
||
print('添加的行:',append_rows)
|
||
save_xls_2(append_rows)
|
||
|
||
|
||
def save_xls_2(append_rows):
|
||
"""保存或更新数据到Excel文件
|
||
参数:
|
||
append_rows (list): 需要追加/更新的数据行,格式为[日期, 数据项1, 数据项2,...]
|
||
"""
|
||
try:
|
||
# 读取现有数据(假设第一行为列名)
|
||
df = pd.read_excel('液化气数据.xlsx', sheet_name=0)
|
||
# 转换append_rows为DataFrame
|
||
append_rows = pd.DataFrame([append_rows],columns=df.columns)
|
||
# 创建新数据行
|
||
new_date = append_rows['Date'].values[0]
|
||
|
||
dates = df['Date'].to_list()
|
||
# 判断日期是否存在
|
||
if new_date in dates:
|
||
# 找到日期所在行的索引
|
||
date_mask = df['Date'] == new_date
|
||
# 存在则更新数据
|
||
df.loc[date_mask] = append_rows.values
|
||
print(f"更新 {new_date} 数据")
|
||
else:
|
||
# 不存在则追加数据
|
||
df = pd.concat([df, append_rows], ignore_index=True)
|
||
print(df.head())
|
||
print(df.tail())
|
||
print(f"插入 {new_date} 新数据")
|
||
|
||
# 保存更新后的数据
|
||
df.to_excel('液化气数据.xlsx', index=False, engine='openpyxl')
|
||
|
||
except FileNotFoundError:
|
||
# 如果文件不存在则创建新文件
|
||
pd.DataFrame([append_rows]).to_excel('液化气数据.xlsx', index=False, engine='openpyxl')
|
||
except Exception as e:
|
||
print(f"保存数据时发生错误: {str(e)}")
|
||
|
||
def check_data(dataItemNo):
|
||
token = get_head_auth()
|
||
if not token:
|
||
return
|
||
|
||
datas = get_data_value(token, dataItemNo)
|
||
if not datas:
|
||
return
|
||
|
||
def get_queryDataListItemNos_value(token, url, dataItemNoList, dateStart, dateEnd):
|
||
|
||
search_data = {
|
||
"funcModule": "数据项",
|
||
"funcOperation": "查询",
|
||
"data": {
|
||
"dateStart": dateStart,
|
||
"dateEnd": dateEnd,
|
||
"dataItemNoList": dataItemNoList # 数据项编码,代表 brent最低价和最高价
|
||
}
|
||
}
|
||
|
||
headers = {"Authorization": token}
|
||
search_res = requests.post(url=url, headers=headers, json=search_data, timeout=(3, 5))
|
||
search_value = json.loads(search_res.text)["data"]
|
||
if search_value:
|
||
return search_value
|
||
else:
|
||
return None
|
||
|
||
def save_queryDataListItemNos_xls(data_df,dataItemNoList):
|
||
from datetime import datetime, timedelta
|
||
current_year_month = datetime.now().strftime('%Y-%m')
|
||
grouped = data_df.groupby("dataDate")
|
||
|
||
# 使用openpyxl打开xlsx文件
|
||
from openpyxl import load_workbook
|
||
workbook = load_workbook('液化气数据.xlsx')
|
||
|
||
# 创建新工作簿
|
||
new_workbook = load_workbook('液化气数据.xlsx')
|
||
|
||
for sheetname in workbook.sheetnames:
|
||
sheet = workbook[sheetname]
|
||
new_sheet = new_workbook[sheetname]
|
||
|
||
current_year_month_row = 0
|
||
# 查找当前月份数据起始行
|
||
for row_idx, row in enumerate(sheet.iter_rows(values_only=True), 1):
|
||
if str(row[0]).startswith(current_year_month):
|
||
current_year_month_row += 1
|
||
|
||
# 追加新数据
|
||
if sheetname == workbook.sheetnames[0]:
|
||
start_row = sheet.max_row - current_year_month_row + 1
|
||
for row_idx, (date, group) in enumerate(grouped, start=start_row):
|
||
new_sheet.cell(row=row_idx, column=1, value=date)
|
||
for j, dataItemNo in enumerate(dataItemNoList, start=2):
|
||
if group[group["dataItemNo"] == dataItemNo]["dataValue"].values:
|
||
new_sheet.cell(row=row_idx, column=j,
|
||
value=group[group["dataItemNo"] == dataItemNo]["dataValue"].values[0])
|
||
|
||
# 保存修改后的xlsx文件
|
||
new_workbook.save("液化气数据.xlsx")
|
||
|
||
|
||
def queryDataListItemNos(date=None,token=None):
|
||
df = pd.read_excel('液化气数据.xlsx')
|
||
dataItemNoList = df.iloc[0].tolist()[1:]
|
||
if token is None:
|
||
token = get_head_auth()
|
||
if not token:
|
||
print('token获取失败')
|
||
return
|
||
# 获取当前日期
|
||
if date is None:
|
||
current_date = datetime.now()
|
||
else:
|
||
current_date = date
|
||
# 获取当月1日
|
||
first_day_of_month = current_date.replace(day=1)
|
||
# 格式化为 YYYYMMDD 格式
|
||
dateEnd = current_date.strftime('%Y%m%d')
|
||
dateStart = first_day_of_month.strftime('%Y%m%d')
|
||
search_value = get_queryDataListItemNos_value(token, queryDataListItemNos_url, dataItemNoList, dateStart, dateEnd)
|
||
data_df = pd.DataFrame(search_value)
|
||
data_df["dataDate"] = pd.to_datetime(data_df["dataDate"])
|
||
data_df["dataDate"] = data_df["dataDate"].dt.strftime('%Y-%m-%d')
|
||
save_queryDataListItemNos_xls(data_df,dataItemNoList)
|
||
print('当月数据更新完成')
|
||
|
||
|
||
|
||
|
||
def main(start_date=None,token=None,token_push=None):
|
||
from datetime import datetime, timedelta
|
||
if start_date is None:
|
||
start_date = datetime.now()
|
||
if token is None:
|
||
token = get_head_auth()
|
||
if token_push is None:
|
||
token_push = get_head_push_auth()
|
||
date = start_date.strftime('%Y%m%d')
|
||
print(date)
|
||
try:
|
||
# 更新当月数据
|
||
queryDataListItemNos(start_date,token)
|
||
except:
|
||
print('当月数据更新失败,单日更新')
|
||
start(date)
|
||
# 更新当日数据,批量日期更新时打开
|
||
# start(date)
|
||
# 训练模型
|
||
optimize_Model()
|
||
# # 预测&上传预测结果
|
||
upload_data_to_system(token_push,start_date)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
print("运行中ing...")
|
||
main()
|