PriceForecast/main_juxiting.py

176 lines
7.5 KiB
Python
Raw Normal View History

# 读取配置
from lib.dataread import *
from lib.tools import *
from models.nerulforcastmodels import ex_Model,model_losss,brent_export_pdf,tansuanli_export_pdf,pp_export_pdf,model_losss_juxiting
import glob
import torch
torch.set_float32_matmul_precision("high")
sqlitedb = SQLiteHandler(db_name)
sqlitedb.connect()
def predict_main():
signature = BinanceAPI(APPID, SECRET)
etadata = EtaReader(signature=signature,
classifylisturl = classifylisturl,
classifyidlisturl=classifyidlisturl,
edbcodedataurl=edbcodedataurl,
edbcodelist=edbcodelist,
edbdatapushurl=edbdatapushurl,
edbdeleteurl=edbdeleteurl,
edbbusinessurl=edbbusinessurl
)
# 获取数据
if is_eta:
# eta数据
logger.info('从eta获取数据...')
signature = BinanceAPI(APPID, SECRET)
etadata = EtaReader(signature=signature,
classifylisturl = classifylisturl,
classifyidlisturl=classifyidlisturl,
edbcodedataurl=edbcodedataurl,
edbcodelist=edbcodelist,
edbdatapushurl=edbdatapushurl,
edbdeleteurl=edbdeleteurl,
edbbusinessurl=edbbusinessurl,
)
df_zhibiaoshuju,df_zhibiaoliebiao = etadata.get_eta_api_pp_data(data_set=data_set,dataset=dataset) # 原始数据,未处理
# 数据处理
df = datachuli_juxiting(df_zhibiaoshuju,df_zhibiaoliebiao,y = y,dataset=dataset,add_kdj=add_kdj,is_timefurture=is_timefurture,end_time=end_time)
else:
logger.info('读取本地数据:'+os.path.join(dataset,data_set))
df = getdata_juxiting(filename=os.path.join(dataset,data_set),y=y,dataset=dataset,add_kdj=add_kdj,is_timefurture=is_timefurture,end_time=end_time) # 原始数据,未处理
# 更改预测列名称
df.rename(columns={y:'y'},inplace=True)
if is_edbnamelist:
df = df[edbnamelist]
df.to_csv(os.path.join(dataset,'指标数据.csv'), index=False)
# 保存最新日期的y值到数据库
# 取第一行数据存储到数据库中
first_row = df[['ds','y']].tail(1)
# 将最新真实值保存到数据库
if not sqlitedb.check_table_exists('trueandpredict'):
first_row.to_sql('trueandpredict',sqlitedb.connection,index=False)
else:
for row in first_row.itertuples(index=False):
row_dict = row._asdict()
row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S')
check_query = sqlitedb.select_data('trueandpredict',where_condition = f"ds = '{row.ds}'")
if len(check_query) > 0:
set_clause = ", ".join([f"{key} = '{value}'" for key, value in row_dict.items()])
sqlitedb.update_data('trueandpredict',set_clause,where_condition = f"ds = '{row.ds}'")
continue
sqlitedb.insert_data('trueandpredict',tuple(row_dict.values()),columns=row_dict.keys())
import datetime
# 判断当前日期是不是周一
is_weekday = datetime.datetime.now().weekday() == 1
if is_weekday:
logger.info('今天是周一,更新预测模型')
# 计算最近20天预测残差最低的模型名称
model_results = sqlitedb.select_data('trueandpredict',order_by = "ds DESC",limit = "20")
# 删除空值率为40%以上的列,删除空行
model_results = model_results.dropna(thresh=len(model_results)*0.6,axis=1)
model_results = model_results.dropna()
modelnames = model_results.columns.to_list()[2:]
for col in model_results[modelnames].select_dtypes(include=['object']).columns:
model_results[col] = model_results[col].astype(np.float32)
# 计算每个预测值与真实值之间的偏差率
for model in modelnames:
model_results[f'{model}_abs_error_rate'] = abs(model_results['y'] - model_results[model]) / model_results['y']
# 获取每行对应的最小偏差率值
min_abs_error_rate_values = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)
# 获取每行对应的最小偏差率值对应的列名
min_abs_error_rate_column_name = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1)
# 将列名索引转换为列名
min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(lambda x: x.split('_')[0])
# 取出现次数最多的模型名称
most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
logger.info(f"最近20天预测残差最低的模型名称{most_common_model}")
# 保存结果到数据库
if not sqlitedb.check_table_exists('most_model'):
sqlitedb.create_table('most_model',columns="ds datetime, most_common_model TEXT")
sqlitedb.insert_data('most_model',(datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),most_common_model,),columns=('ds','most_common_model',))
if is_corr:
df = corr_feature(df=df)
df1 = df.copy() # 备份一下后面特征筛选完之后加入ds y 列用
logger.info(f"开始训练模型...")
row,col = df.shape
now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
2024-11-20 14:14:27 +08:00
# ex_Model(df,
# horizon=horizon,
# input_size=input_size,
# train_steps=train_steps,
# val_check_steps=val_check_steps,
# early_stop_patience_steps=early_stop_patience_steps,
# is_debug=is_debug,
# dataset=dataset,
# is_train=is_train,
# is_fivemodels=is_fivemodels,
# val_size=val_size,
# test_size=test_size,
# settings=settings,
# now=now,
# etadata = etadata,
# modelsindex = modelsindex,
# data = data,
# is_eta=is_eta,
# )
logger.info('模型训练完成')
# # 模型评估
logger.info('训练数据绘图ing')
model_results3 = model_losss_juxiting(sqlitedb)
logger.info('训练数据绘图end')
# 模型报告
logger.info('制作报告ing')
title = f'{settings}--{now}-预测报告' # 报告标题
2024-11-14 17:26:17 +08:00
pp_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,time=end_time,
reportname=reportname,sqlitedb=sqlitedb),
logger.info('制作报告end')
logger.info('模型训练完成')
# tansuanli_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,end_time=end_time,reportname=reportname)
# # LSTM 单变量模型
# ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset)
# # lstm 多变量模型
# ex_Lstm_M(df,n_days=input_size,out_days=horizon,is_debug=is_debug,datasetpath=dataset)
# # GRU 模型
# # ex_GRU(df)
# 发送邮件
m = SendMail(
username=username,
passwd=passwd,
recv=recv,
title=title,
content=content,
file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime),
ssl=ssl,
)
# m.send_mail()
if __name__ == '__main__':
predict_main()