添加日志信息
This commit is contained in:
parent
f4eea44c8c
commit
bf831258e6
8
main.py
8
main.py
@ -138,15 +138,23 @@ def predict_main():
|
||||
is_eta=is_eta,
|
||||
)
|
||||
|
||||
|
||||
logger.info('模型训练完成')
|
||||
# # 模型评估
|
||||
|
||||
logger.info('训练数据绘图ing')
|
||||
model_results3 = model_losss_juxiting(sqlitedb)
|
||||
|
||||
logger.info('训练数据绘图end')
|
||||
# 模型报告
|
||||
|
||||
logger.info('制作报告ing')
|
||||
title = f'{settings}--{now}-预测报告' # 报告标题
|
||||
brent_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,time=end_time,
|
||||
reportname=reportname,sqlitedb=sqlitedb),
|
||||
# pp_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,time=end_time,
|
||||
# reportname=reportname),
|
||||
logger.info('制作报告end')
|
||||
logger.info('模型训练完成')
|
||||
|
||||
# tansuanli_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,end_time=end_time,reportname=reportname)
|
||||
|
@ -510,36 +510,14 @@ def model_losss_juxiting(sqlitedb):
|
||||
|
||||
|
||||
# 使用最佳五个模型进行绘图
|
||||
# best_models = pd.read_csv(os.path.join(dataset,'best_modelnames.txt'),header=None).values.flatten().tolist()
|
||||
# def find_min_max_within_quantile(row):
|
||||
# row = row[best_models]
|
||||
# q10 = row.min()
|
||||
# q90 = row.max()
|
||||
# # 获取 row行10%分位值对应的模型名称
|
||||
# min_model = row[row == q10].idxmin()
|
||||
# max_model = row[row == q90].idxmin()
|
||||
|
||||
# # # 判断flot值是否为空值
|
||||
# # if pd.isna(q10) or pd.isna(q90):
|
||||
# return pd.Series([q10, q90,min_model,max_model], index=['min_within_quantile','max_within_quantile','min_model','max_model'])
|
||||
|
||||
# # 遍历行
|
||||
# df_combined3[['min_within_quantile', 'max_within_quantile','min_model','max_model']] = df_combined3.apply(find_min_max_within_quantile, axis=1)
|
||||
# df_combined = df_combined.round(4)
|
||||
# print(df_combined3)
|
||||
|
||||
|
||||
|
||||
|
||||
# 通道使用预测模型的80%置信度
|
||||
best_models = pd.read_csv(os.path.join(dataset,'best_modelnames.txt'),header=None).values.flatten().tolist()
|
||||
def find_min_max_within_quantile(row):
|
||||
row.drop(['ds','y'], inplace=True)
|
||||
# 获取分位数10%和90%的值
|
||||
q10 = row.quantile(0.1)
|
||||
q90 = row.quantile(0.9)
|
||||
row = row[best_models]
|
||||
q10 = row.min()
|
||||
q90 = row.max()
|
||||
# 获取 row行10%分位值对应的模型名称
|
||||
min_model = row[row == q10].index[0]
|
||||
max_model = row[row == q90].index[0]
|
||||
min_model = row[row == q10].idxmin()
|
||||
max_model = row[row == q90].idxmin()
|
||||
|
||||
# # 判断flot值是否为空值
|
||||
# if pd.isna(q10) or pd.isna(q90):
|
||||
@ -549,6 +527,28 @@ def model_losss_juxiting(sqlitedb):
|
||||
df_combined3[['min_within_quantile', 'max_within_quantile','min_model','max_model']] = df_combined3.apply(find_min_max_within_quantile, axis=1)
|
||||
df_combined = df_combined.round(4)
|
||||
print(df_combined3)
|
||||
|
||||
|
||||
|
||||
|
||||
# # 通道使用预测模型的80%置信度
|
||||
# def find_min_max_within_quantile(row):
|
||||
# row.drop(['ds','y'], inplace=True)
|
||||
# # 获取分位数10%和90%的值
|
||||
# q10 = row.quantile(0.1)
|
||||
# q90 = row.quantile(0.9)
|
||||
# # 获取 row行10%分位值对应的模型名称
|
||||
# min_model = row[row == q10].index[0]
|
||||
# max_model = row[row == q90].index[0]
|
||||
|
||||
# # # 判断flot值是否为空值
|
||||
# # if pd.isna(q10) or pd.isna(q90):
|
||||
# return pd.Series([q10, q90,min_model,max_model], index=['min_within_quantile','max_within_quantile','min_model','max_model'])
|
||||
|
||||
# # 遍历行
|
||||
# df_combined3[['min_within_quantile', 'max_within_quantile','min_model','max_model']] = df_combined3.apply(find_min_max_within_quantile, axis=1)
|
||||
# df_combined = df_combined.round(4)
|
||||
# print(df_combined3)
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user