原油报告内容更改
This commit is contained in:
parent
3b8b29895b
commit
ec18d536ac
@ -234,6 +234,15 @@
|
|||||||
# content.append(Graphs.draw_text('与皮尔逊相关系数相比,斯皮尔曼相关系数对于数据中的异常值不敏感,更适用于处理非线性关系或存在极端值的数据。'))
|
# content.append(Graphs.draw_text('与皮尔逊相关系数相比,斯皮尔曼相关系数对于数据中的异常值不敏感,更适用于处理非线性关系或存在极端值的数据。'))
|
||||||
|
|
||||||
|
|
||||||
|
# 附1,特征列表
|
||||||
|
# content.append(Graphs.draw_little_title('附1、特征列表:'))
|
||||||
|
# df_fuyi = pd.read_csv(os.path.join(dataset,'特征频度统计.csv'),encoding='utf-8')
|
||||||
|
# for col in df_fuyi.columns:
|
||||||
|
# fuyi = df_fuyi[col]
|
||||||
|
# fuyi = fuyi.dropna()
|
||||||
|
# content.append(Graphs.draw_text(f'{col}:'))
|
||||||
|
# for i in range(len(fuyi)):
|
||||||
|
# content.append(Graphs.draw_text(f'{i+1}、{fuyi[i]}'))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -192,14 +192,14 @@ warning_data = {
|
|||||||
### 开关
|
### 开关
|
||||||
is_train = True # 是否训练
|
is_train = True # 是否训练
|
||||||
is_debug = False # 是否调试
|
is_debug = False # 是否调试
|
||||||
is_eta = True # 是否使用eta接口
|
is_eta = False # 是否使用eta接口
|
||||||
is_timefurture = True # 是否使用时间特征
|
is_timefurture = True # 是否使用时间特征
|
||||||
is_fivemodels = False # 是否使用之前保存的最佳的5个模型
|
is_fivemodels = False # 是否使用之前保存的最佳的5个模型
|
||||||
is_edbcode = False # 特征使用edbcoding列表中的
|
is_edbcode = False # 特征使用edbcoding列表中的
|
||||||
is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
|
is_edbnamelist = False # 自定义特征,对应上面的edbnamelist
|
||||||
is_update_eta = False # 预测结果上传到eta
|
is_update_eta = False # 预测结果上传到eta
|
||||||
is_update_report = False # 是否上传报告
|
is_update_report = False # 是否上传报告
|
||||||
is_update_warning_data = True # 是否上传预警数据
|
is_update_warning_data = False # 是否上传预警数据
|
||||||
|
|
||||||
# 数据截取日期
|
# 数据截取日期
|
||||||
end_time = '' # 数据截取日期
|
end_time = '' # 数据截取日期
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
# from config_jingbo import *
|
from config_jingbo import *
|
||||||
from config_juxiting import *
|
# from config_juxiting import *
|
||||||
|
|
||||||
|
|
||||||
# 导入模块
|
# 导入模块
|
||||||
|
@ -116,7 +116,7 @@ def predict_main():
|
|||||||
logger.info('今天是周一,更新预测模型')
|
logger.info('今天是周一,更新预测模型')
|
||||||
# 计算最近20天预测残差最低的模型名称
|
# 计算最近20天预测残差最低的模型名称
|
||||||
|
|
||||||
model_results = sqlitedb.select_data('trueandpredict', order_by="ds DESC", limit="20")
|
model_results = sqlitedb.select_data('trueandpredict', order_by="ds DESC", limit="60")
|
||||||
# 删除空值率为40%以上的列,删除空行
|
# 删除空值率为40%以上的列,删除空行
|
||||||
model_results = model_results.dropna(thresh=len(model_results)*0.6,axis=1)
|
model_results = model_results.dropna(thresh=len(model_results)*0.6,axis=1)
|
||||||
model_results = model_results.dropna()
|
model_results = model_results.dropna()
|
||||||
@ -135,7 +135,7 @@ def predict_main():
|
|||||||
min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(lambda x: x.split('_')[0])
|
min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(lambda x: x.split('_')[0])
|
||||||
# 取出现次数最多的模型名称
|
# 取出现次数最多的模型名称
|
||||||
most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
|
most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
|
||||||
logger.info(f"最近20天预测残差最低的模型名称:{most_common_model}")
|
logger.info(f"最近60天预测残差最低的模型名称:{most_common_model}")
|
||||||
|
|
||||||
# 保存结果到数据库
|
# 保存结果到数据库
|
||||||
|
|
||||||
@ -151,31 +151,31 @@ def predict_main():
|
|||||||
row, col = df.shape
|
row, col = df.shape
|
||||||
|
|
||||||
now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
|
now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
|
||||||
ex_Model(df,
|
# ex_Model(df,
|
||||||
horizon=horizon,
|
# horizon=horizon,
|
||||||
input_size=input_size,
|
# input_size=input_size,
|
||||||
train_steps=train_steps,
|
# train_steps=train_steps,
|
||||||
val_check_steps=val_check_steps,
|
# val_check_steps=val_check_steps,
|
||||||
early_stop_patience_steps=early_stop_patience_steps,
|
# early_stop_patience_steps=early_stop_patience_steps,
|
||||||
is_debug=is_debug,
|
# is_debug=is_debug,
|
||||||
dataset=dataset,
|
# dataset=dataset,
|
||||||
is_train=is_train,
|
# is_train=is_train,
|
||||||
is_fivemodels=is_fivemodels,
|
# is_fivemodels=is_fivemodels,
|
||||||
val_size=val_size,
|
# val_size=val_size,
|
||||||
test_size=test_size,
|
# test_size=test_size,
|
||||||
settings=settings,
|
# settings=settings,
|
||||||
now=now,
|
# now=now,
|
||||||
etadata=etadata,
|
# etadata=etadata,
|
||||||
modelsindex=modelsindex,
|
# modelsindex=modelsindex,
|
||||||
data=data,
|
# data=data,
|
||||||
is_eta=is_eta,
|
# is_eta=is_eta,
|
||||||
)
|
# )
|
||||||
|
|
||||||
|
|
||||||
logger.info('模型训练完成')
|
logger.info('模型训练完成')
|
||||||
|
|
||||||
logger.info('训练数据绘图ing')
|
logger.info('训练数据绘图ing')
|
||||||
model_results3 = model_losss_juxiting(sqlitedb)
|
model_results3 = model_losss(sqlitedb)
|
||||||
logger.info('训练数据绘图end')
|
logger.info('训练数据绘图end')
|
||||||
|
|
||||||
# 模型报告
|
# 模型报告
|
||||||
@ -207,7 +207,7 @@ def predict_main():
|
|||||||
file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime),
|
file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime),
|
||||||
ssl=ssl,
|
ssl=ssl,
|
||||||
)
|
)
|
||||||
m.send_mail()
|
# m.send_mail()
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
@ -369,8 +369,8 @@ def model_losss(sqlitedb):
|
|||||||
|
|
||||||
|
|
||||||
# 最多频率的模型名称
|
# 最多频率的模型名称
|
||||||
min_model_max_frequency_model = df_combined3['min_model'].value_counts().idxmax()
|
min_model_max_frequency_model = df_combined3['min_model'][-50:].value_counts().idxmax()
|
||||||
max_model_max_frequency_model = df_combined3['max_model'].value_counts().idxmax()
|
max_model_max_frequency_model = df_combined3['max_model'][-50:].value_counts().idxmax()
|
||||||
df_predict['min_model'] = min_model_max_frequency_model
|
df_predict['min_model'] = min_model_max_frequency_model
|
||||||
df_predict['max_model'] = max_model_max_frequency_model
|
df_predict['max_model'] = max_model_max_frequency_model
|
||||||
df_predict['min_within_quantile'] = df_predict[min_model_max_frequency_model]
|
df_predict['min_within_quantile'] = df_predict[min_model_max_frequency_model]
|
||||||
@ -756,7 +756,7 @@ def brent_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inpu
|
|||||||
content = list()
|
content = list()
|
||||||
# 获取特征的近一月值
|
# 获取特征的近一月值
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
feature_data_df = pd.read_csv(os.path.join(dataset,'指标数据添加时间特征.csv'), parse_dates=['ds']).tail(20)
|
feature_data_df = pd.read_csv(os.path.join(dataset,'指标数据添加时间特征.csv'), parse_dates=['ds']).tail(60)
|
||||||
def draw_feature_trend(feature_data_df, features):
|
def draw_feature_trend(feature_data_df, features):
|
||||||
# 画特征近一周的趋势图
|
# 画特征近一周的趋势图
|
||||||
feature_df = feature_data_df[['ds','y']+features]
|
feature_df = feature_data_df[['ds','y']+features]
|
||||||
@ -976,222 +976,6 @@ def brent_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inpu
|
|||||||
content.append(Graphs.draw_text('气泡图中,横轴为指标分类,纵轴为指标分类下的特征数量,气泡的面积越大表示该分类中特征的相关系数和越大。'))
|
content.append(Graphs.draw_text('气泡图中,横轴为指标分类,纵轴为指标分类下的特征数量,气泡的面积越大表示该分类中特征的相关系数和越大。'))
|
||||||
logger.info(f'绘制相关性总和的气泡图结束')
|
logger.info(f'绘制相关性总和的气泡图结束')
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# # 计算特征相关性
|
|
||||||
# data.rename(columns={y: 'y'}, inplace=True)
|
|
||||||
# data['ds'] = pd.to_datetime(data['ds'])
|
|
||||||
# data.drop(columns=['ds'], inplace=True)
|
|
||||||
# # 创建一个空的 DataFrame 来保存相关系数
|
|
||||||
# correlation_df = pd.DataFrame(columns=['Feature', 'Correlation'])
|
|
||||||
# # 计算各特征与目标列的皮尔逊相关系数,并保存到新的 Data 中
|
|
||||||
# for col in data.columns:
|
|
||||||
# if col!= 'y':
|
|
||||||
# pearson_correlation = np.corrcoef(data[col], data['y'])[0, 1]
|
|
||||||
# spearman_correlation, _ = spearmanr(data[col], data['y'])
|
|
||||||
# new_row = {'Feature': col, 'Pearson_Correlation': round(pearson_correlation,3), 'Spearman_Correlation': round(spearman_correlation,2)}
|
|
||||||
# correlation_df = correlation_df._append(new_row, ignore_index=True)
|
|
||||||
|
|
||||||
# correlation_df.drop('Correlation', axis=1, inplace=True)
|
|
||||||
# correlation_df.dropna(inplace=True)
|
|
||||||
# correlation_df.to_csv(os.path.join(dataset,'指标相关性分析.csv'), index=False)
|
|
||||||
|
|
||||||
# data = correlation_df['Pearson_Correlation'].values.tolist()
|
|
||||||
# # 生成 -1 到 1 的 20 个区间
|
|
||||||
# bins = np.linspace(-1, 1, 21)
|
|
||||||
# # 计算每个区间的统计数(这里是区间内数据的数量)
|
|
||||||
# hist_values = [np.sum((data >= bins[i]) & (data < bins[i + 1])) for i in range(len(bins) - 1)]
|
|
||||||
|
|
||||||
# #设置画布大小
|
|
||||||
# plt.figure(figsize=(10, 6))
|
|
||||||
# # 绘制直方图
|
|
||||||
# plt.bar(bins[:-1], hist_values, width=(bins[1] - bins[0]))
|
|
||||||
|
|
||||||
# # 添加标题和坐标轴标签
|
|
||||||
# plt.title('皮尔逊相关系数分布图')
|
|
||||||
# plt.xlabel('区间')
|
|
||||||
# plt.ylabel('统计数')
|
|
||||||
# plt.savefig(os.path.join(dataset, '皮尔逊相关性系数.png'))
|
|
||||||
# plt.close()
|
|
||||||
|
|
||||||
|
|
||||||
# #设置画布大小
|
|
||||||
# plt.figure(figsize=(10, 6))
|
|
||||||
# data = correlation_df['Spearman_Correlation'].values.tolist()
|
|
||||||
# # 计算每个区间的统计数(这里是区间内数据的数量)
|
|
||||||
# hist_values = [np.sum((data >= bins[i]) & (data < bins[i + 1])) for i in range(len(bins) - 1)]
|
|
||||||
|
|
||||||
# # 绘制直方图
|
|
||||||
# plt.bar(bins[:-1], hist_values, width=(bins[1] - bins[0]))
|
|
||||||
|
|
||||||
# # 添加标题和坐标轴标签
|
|
||||||
# plt.title('斯皮尔曼相关系数分布图')
|
|
||||||
# plt.xlabel('区间')
|
|
||||||
# plt.ylabel('统计数')
|
|
||||||
# plt.savefig(os.path.join(dataset, '斯皮尔曼相关性系数.png'))
|
|
||||||
# plt.close()
|
|
||||||
# content.append(Graphs.draw_text(f'指标相关性分析--皮尔逊相关系数:'))
|
|
||||||
# # 皮尔逊正相关 不相关 负相关 的表格
|
|
||||||
# content.append(Graphs.draw_img(os.path.join(dataset,'皮尔逊相关性系数.png')))
|
|
||||||
# content.append(Graphs.draw_text('''皮尔逊相关系数说明:'''))
|
|
||||||
# content.append(Graphs.draw_text('''衡量两个特征之间的线性相关性。'''))
|
|
||||||
# content.append(Graphs.draw_text('''
|
|
||||||
# 相关系数为1:表示两个变量之间存在完全正向的线性关系,即当一个变量增加时,另一个变量也相应增加,且变化是完全一致的。'''))
|
|
||||||
# content.append(Graphs.draw_text('''当前特征中正相关前十的有:'''))
|
|
||||||
# top10_columns = correlation_df.sort_values(by='Pearson_Correlation',ascending=False).head(10)['Feature'].to_list()
|
|
||||||
# top10 = ','.join(top10_columns)
|
|
||||||
# content.append(Graphs.draw_text(f'''{top10}'''))
|
|
||||||
|
|
||||||
# feature_df = feature_data_df[['ds','y']+top10_columns]
|
|
||||||
# # 遍历X每一列,和yy画散点图 ,
|
|
||||||
# for i, col in enumerate(feature_df.columns):
|
|
||||||
# print(f'正在绘制第{i+1}个特征{col}与价格散点图...')
|
|
||||||
# if col not in ['ds', 'y']:
|
|
||||||
# fig, ax1 = plt.subplots(figsize=(10, 6))
|
|
||||||
# # 在第一个坐标轴上绘制数据
|
|
||||||
# ax1.plot(feature_df['ds'], feature_df['y'], 'b-')
|
|
||||||
# ax1.set_xlabel('日期')
|
|
||||||
# ax1.set_ylabel('y', color='b')
|
|
||||||
# ax1.tick_params('y', colors='b')
|
|
||||||
# # 在 ax1 上添加文本显示值,添加一定的偏移避免值与曲线重叠
|
|
||||||
# for j in range(1,len(feature_df),2):
|
|
||||||
# value = feature_df['y'].iloc[j]
|
|
||||||
# date = feature_df['ds'].iloc[j]
|
|
||||||
# offset = 1.001
|
|
||||||
# ax1.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='b', fontsize=10)
|
|
||||||
# # 创建第二个坐标轴
|
|
||||||
# ax2 = ax1.twinx()
|
|
||||||
# # 在第二个坐标轴上绘制数据
|
|
||||||
# line2 = ax2.plot(feature_df['ds'], feature_df[col], 'r-')
|
|
||||||
# ax2.set_ylabel(col, color='r')
|
|
||||||
# ax2.tick_params('y', colors='r')
|
|
||||||
# # 在 ax2 上添加文本显示值,添加一定的偏移避免值与曲线重叠
|
|
||||||
# for j in range(0,len(feature_df),2):
|
|
||||||
# value = feature_df[col].iloc[j]
|
|
||||||
# date = feature_df['ds'].iloc[j]
|
|
||||||
# offset = 1.001
|
|
||||||
# ax2.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='r', fontsize=10)
|
|
||||||
# # 添加标题
|
|
||||||
# plt.title(col)
|
|
||||||
# # 设置横坐标为日期格式并自动调整
|
|
||||||
# locator = mdates.AutoDateLocator()
|
|
||||||
# formatter = mdates.AutoDateFormatter(locator)
|
|
||||||
# ax1.xaxis.set_major_locator(locator)
|
|
||||||
# ax1.xaxis.set_major_formatter(formatter)
|
|
||||||
# # 文件名特殊字符处理
|
|
||||||
# col = col.replace('*', '-')
|
|
||||||
# col = col.replace(':', '-')
|
|
||||||
# plt.savefig(os.path.join(dataset, f'{col}与价格散点图.png'))
|
|
||||||
# content.append(Graphs.draw_img(os.path.join(dataset, f'{col}与价格散点图.png')))
|
|
||||||
# plt.close()
|
|
||||||
|
|
||||||
|
|
||||||
# content.append(Graphs.draw_text(f'指标相关性分析--斯皮尔曼相关系数:'))
|
|
||||||
# # 皮尔逊正相关 不相关 负相关 的表格
|
|
||||||
# content.append(Graphs.draw_img(os.path.join(dataset,'斯皮尔曼相关性系数.png')))
|
|
||||||
# content.append(Graphs.draw_text('斯皮尔曼相关系数(Spearmans rank correlation coefficient)是一种用于衡量两个变量之间的单调关系(不一定是线性关系)的统计指标。'))
|
|
||||||
# content.append(Graphs.draw_text('它的计算基于变量的秩次(即变量值的排序位置)而非变量的原始值。'))
|
|
||||||
# content.append(Graphs.draw_text('斯皮尔曼相关系数的取值范围在 -1 到 1 之间。'))
|
|
||||||
# content.append(Graphs.draw_text('当系数为 1 时,表示两个变量之间存在完全正的单调关系;'))
|
|
||||||
# content.append(Graphs.draw_text('''当前特征中正单调关系前十的有:'''))
|
|
||||||
# top10_columns = correlation_df.sort_values(by='Spearman_Correlation',ascending=False).head(10)['Feature'].to_list()
|
|
||||||
# top10 = ','.join(top10_columns)
|
|
||||||
# content.append(Graphs.draw_text(f'''{top10}'''))
|
|
||||||
|
|
||||||
# feature_df = feature_data_df[['ds','y']+top10_columns]
|
|
||||||
# # 遍历X每一列,和yy画散点图 ,
|
|
||||||
# for i, col in enumerate(feature_df.columns):
|
|
||||||
# print(f'正在绘制第{i+1}个特征{col}与价格散点图...')
|
|
||||||
# if col not in ['ds', 'y']:
|
|
||||||
# fig, ax1 = plt.subplots(figsize=(10, 6))
|
|
||||||
# # 在第一个坐标轴上绘制数据
|
|
||||||
# ax1.plot(feature_df['ds'], feature_df['y'], 'b-')
|
|
||||||
# ax1.set_xlabel('日期')
|
|
||||||
# ax1.set_ylabel('y', color='b')
|
|
||||||
# ax1.tick_params('y', colors='b')
|
|
||||||
# # 在 ax1 上添加文本显示值,添加一定的偏移避免值与曲线重叠
|
|
||||||
# for j in range(1,len(feature_df),2):
|
|
||||||
# value = feature_df['y'].iloc[j]
|
|
||||||
# date = feature_df['ds'].iloc[j]
|
|
||||||
# offset = 1.001
|
|
||||||
# ax1.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='b', fontsize=10)
|
|
||||||
# # 创建第二个坐标轴
|
|
||||||
# ax2 = ax1.twinx()
|
|
||||||
# # 在第二个坐标轴上绘制数据
|
|
||||||
# line2 = ax2.plot(feature_df['ds'], feature_df[col], 'r-')
|
|
||||||
# ax2.set_ylabel(col, color='r')
|
|
||||||
# ax2.tick_params('y', colors='r')
|
|
||||||
# # 在 ax2 上添加文本显示值,添加一定的偏移避免值与曲线重叠
|
|
||||||
# for j in range(0,len(feature_df),2):
|
|
||||||
# value = feature_df[col].iloc[j]
|
|
||||||
# date = feature_df['ds'].iloc[j]
|
|
||||||
# offset = 1.001
|
|
||||||
# ax2.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='r', fontsize=10)
|
|
||||||
# # 添加标题
|
|
||||||
# plt.title(col)
|
|
||||||
# # 设置横坐标为日期格式并自动调整
|
|
||||||
# locator = mdates.AutoDateLocator()
|
|
||||||
# formatter = mdates.AutoDateFormatter(locator)
|
|
||||||
# ax1.xaxis.set_major_locator(locator)
|
|
||||||
# ax1.xaxis.set_major_formatter(formatter)
|
|
||||||
# # 文件名特殊字符处理
|
|
||||||
# col = col.replace('*', '-')
|
|
||||||
# col = col.replace(':', '-')
|
|
||||||
# plt.savefig(os.path.join(dataset, f'{col}与价格散点图.png'))
|
|
||||||
# content.append(Graphs.draw_img(os.path.join(dataset, f'{col}与价格散点图.png')))
|
|
||||||
# plt.close()
|
|
||||||
|
|
||||||
# content.append(Graphs.draw_text('当系数为 -1 时,表示存在完全负的单调关系;'))
|
|
||||||
# content.append(Graphs.draw_text('''当前特征中负单调关系前十的有:'''))
|
|
||||||
# tail10_columns = correlation_df.sort_values(by='Spearman_Correlation',ascending=True).head(10)['Feature'].to_list()
|
|
||||||
# top10 = ','.join(tail10_columns)
|
|
||||||
# content.append(Graphs.draw_text(f'''{top10}'''))
|
|
||||||
# # 获取特征的近一周值
|
|
||||||
# feature_df = feature_data_df[['ds','y']+tail10_columns]
|
|
||||||
# # 遍历X每一列,和yy画散点图 ,
|
|
||||||
# for i, col in enumerate(feature_df.columns):
|
|
||||||
# print(f'正在绘制第{i+1}个特征{col}与价格散点图...')
|
|
||||||
# if col not in ['ds', 'y']:
|
|
||||||
# fig, ax1 = plt.subplots(figsize=(10, 6))
|
|
||||||
# # 在第一个坐标轴上绘制数据
|
|
||||||
# ax1.plot(feature_df['ds'], feature_df['y'], 'b-')
|
|
||||||
# ax1.set_xlabel('日期')
|
|
||||||
# ax1.set_ylabel('y', color='b')
|
|
||||||
# ax1.tick_params('y', colors='b')
|
|
||||||
# # 在 ax1 上添加文本显示值,添加一定的偏移避免值与曲线重叠
|
|
||||||
# for j in range(len(feature_df)):
|
|
||||||
# if j%2 == 1:
|
|
||||||
# value = feature_df['y'].iloc[j]
|
|
||||||
# date = feature_df['ds'].iloc[j]
|
|
||||||
# offset = 1.001
|
|
||||||
# ax1.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='b', fontsize=10)
|
|
||||||
# # 创建第二个坐标轴
|
|
||||||
# ax2 = ax1.twinx()
|
|
||||||
# # 在第二个坐标轴上绘制数据
|
|
||||||
# line2 = ax2.plot(feature_df['ds'], feature_df[col], 'r-')
|
|
||||||
# ax2.set_ylabel(col, color='r')
|
|
||||||
# ax2.tick_params('y', colors='r')
|
|
||||||
# # 在 ax2 上添加文本显示值,添加一定的偏移避免值与曲线重叠
|
|
||||||
# for j in range(1,len(feature_df),2):
|
|
||||||
# value = feature_df[col].iloc[j]
|
|
||||||
# date = feature_df['ds'].iloc[j]
|
|
||||||
# offset = 1.001
|
|
||||||
# ax2.text(date, value * offset, str(round(value, 2)), ha='center', va='bottom', color='r', fontsize=10)
|
|
||||||
# # 添加标题
|
|
||||||
# plt.title(col)
|
|
||||||
# # 设置横坐标为日期格式并自动调整
|
|
||||||
# locator = mdates.AutoDateLocator()
|
|
||||||
# formatter = mdates.AutoDateFormatter(locator)
|
|
||||||
# ax1.xaxis.set_major_locator(locator)
|
|
||||||
# ax1.xaxis.set_major_formatter(formatter)
|
|
||||||
# # 文件名特殊字符处理
|
|
||||||
# col = col.replace('*', '-')
|
|
||||||
# col = col.replace(':', '-')
|
|
||||||
# plt.savefig(os.path.join(dataset, f'{col}与价格散点图.png'))
|
|
||||||
# content.append(Graphs.draw_img(os.path.join(dataset, f'{col}与价格散点图.png')))
|
|
||||||
# plt.close()
|
|
||||||
# content.append(Graphs.draw_text('当系数为 0 时,表示两个变量之间不存在单调关系。'))
|
|
||||||
# content.append(Graphs.draw_text('与皮尔逊相关系数相比,斯皮尔曼相关系数对于数据中的异常值不敏感,更适用于处理非线性关系或存在极端值的数据。'))
|
|
||||||
content.append(Graphs.draw_little_title('模型选择:'))
|
content.append(Graphs.draw_little_title('模型选择:'))
|
||||||
content.append(Graphs.draw_text(f'预测使用了{num_models}个模型进行训练拟合,通过评估指标MAE从小到大排列,前5个模型的简介如下:'))
|
content.append(Graphs.draw_text(f'预测使用了{num_models}个模型进行训练拟合,通过评估指标MAE从小到大排列,前5个模型的简介如下:'))
|
||||||
|
|
||||||
@ -1230,15 +1014,6 @@ def brent_export_pdf(num_indicators=475,num_models=21, num_dayindicator=202,inpu
|
|||||||
# 添加图片
|
# 添加图片
|
||||||
content.append(Graphs.draw_img(os.path.join(dataset,'预测值与真实值对比图.png')))
|
content.append(Graphs.draw_img(os.path.join(dataset,'预测值与真实值对比图.png')))
|
||||||
|
|
||||||
# 附1,特征列表
|
|
||||||
content.append(Graphs.draw_little_title('附1、特征列表:'))
|
|
||||||
df_fuyi = pd.read_csv(os.path.join(dataset,'特征频度统计.csv'),encoding='utf-8')
|
|
||||||
for col in df_fuyi.columns:
|
|
||||||
fuyi = df_fuyi[col]
|
|
||||||
fuyi = fuyi.dropna()
|
|
||||||
content.append(Graphs.draw_text(f'{col}:'))
|
|
||||||
for i in range(len(fuyi)):
|
|
||||||
content.append(Graphs.draw_text(f'{i+1}、{fuyi[i]}'))
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user