石油焦普货日度预测配置

This commit is contained in:
workpc 2025-03-26 14:13:42 +08:00
parent deab1ec0bb
commit f8fa931067
9 changed files with 1127 additions and 203 deletions

View File

@ -18,10 +18,22 @@
"import numpy as np\n",
"# 变量定义\n",
"login_url = \"http://10.200.32.39/jingbo-api/api/server/login\"\n",
"search_url = \"http://10.200.32.39/jingbo-api/api/warehouse/dwDataItem/queryByItemNos\"\n",
"# query_data_list_item_nos_url\n",
"search_url = \"http://10.200.32.39/jingbo-api/api/warehouse/dwDataItem/queryByItemNos\" #jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos\n",
"upload_url = \"http://10.200.32.39/jingbo-api/api/dw/dataValue/pushDataValueList\"\n",
"\n",
"\n",
"query_data_list_item_nos_data = {\n",
" \"funcModule\": \"数据项\",\n",
" \"funcOperation\": \"查询\",\n",
" \"data\": {\n",
" \"dateStart\": \"20200101\",\n",
" \"dateEnd\": \"20241231\",\n",
" \"dataItemNoList\": [\"Brentzdj\", \"Brentzgj\"] # 数据项编码,代表 brent最低价和最高价\n",
" }\n",
"}\n",
"\n",
"\n",
"login_data = {\n",
" \"data\": {\n",
" \"account\": \"api_dev\",\n",
@ -844,7 +856,7 @@
" # headers1 = {\"Authorization\": token_push}\n",
" # res = requests.post(url=upload_url, headers=headers1, json=data1, timeout=(3, 5))\n",
" \n",
" \n",
"\n",
"\n",
"\n",
"\n",
@ -960,8 +972,6 @@
" # 保存新的xls文件\n",
" new_workbook.save(\"定性模型数据项12-11.xlsx\")\n",
"\n",
"\n",
"\n",
"\n"
]
},

View File

@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"metadata": {},
"outputs": [
{
@ -11,23 +11,23 @@
" <script type=\"text/javascript\">\n",
" window.PlotlyConfig = {MathJaxConfig: 'local'};\n",
" if (window.MathJax && window.MathJax.Hub && window.MathJax.Hub.Config) {window.MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}\n",
" if (typeof require !== 'undefined') {\n",
" require.undef(\"plotly\");\n",
" requirejs.config({\n",
" paths: {\n",
" 'plotly': ['https://cdn.plot.ly/plotly-2.12.1.min']\n",
" }\n",
" });\n",
" require(['plotly'], function(Plotly) {\n",
" window._Plotly = Plotly;\n",
" });\n",
" }\n",
" </script>\n",
" <script type=\"module\">import \"https://cdn.plot.ly/plotly-3.0.1.min\"</script>\n",
" "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\h5218\\AppData\\Local\\Temp\\ipykernel_25428\\1736143337.py:811: DeprecationWarning:\n",
"\n",
"The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty.\n",
"\n"
]
}
],
"source": [
@ -35,11 +35,14 @@
"import json\n",
"import xlrd\n",
"import xlwt\n",
"from datetime import datetime\n",
"import datetime\n",
"import time\n",
"import pandas as pd\n",
"\n",
"# 变量定义\n",
"login_url = \"http://10.200.32.39/jingbo-api/api/server/login\"\n",
"search_url = \"http://10.200.32.39/jingbo-api/api/warehouse/dwDataItem/queryByItemNos\"\n",
"queryDataListItemNos_url = \"http://10.200.32.39/jingbo-api//api/warehouse/dwDataItem/queryDataListItemNos\"\n",
"\n",
"login_push_url = \"http://10.200.32.39/jingbo-api/api/server/login\"\n",
"upload_url = \"http://10.200.32.39/jingbo-api/api/dw/dataValue/pushDataValueList\"\n",
@ -756,9 +759,133 @@
" new_workbook.save(\"沥青数据项.xls\")\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"def get_queryDataListItemNos_value(token, url, dataItemNoList, dateStart, dateEnd):\n",
"\n",
" search_data = {\n",
" \"funcModule\": \"数据项\",\n",
" \"funcOperation\": \"查询\",\n",
" \"data\": {\n",
" \"dateStart\": dateStart,\n",
" \"dateEnd\": dateEnd,\n",
" \"dataItemNoList\": dataItemNoList # 数据项编码,代表 brent最低价和最高价\n",
" }\n",
" }\n",
"\n",
" headers = {\"Authorization\": token}\n",
" search_res = requests.post(url=url, headers=headers, json=search_data, timeout=(3, 5))\n",
" search_value = json.loads(search_res.text)[\"data\"]\n",
" if search_value:\n",
" return search_value\n",
" else:\n",
" return None\n",
"\n",
"\n",
"\n",
"def save_queryDataListItemNos_xls(data_df,dataItemNoList):\n",
"\n",
" current_year_month = datetime.datetime.now().strftime('%Y-%m')\n",
" grouped = data_df.groupby(\"dataDate\")\n",
"\n",
" # 打开xls文件\n",
" workbook = xlrd.open_workbook('沥青数据项.xls')\n",
"\n",
" # 获取所有sheet的个数\n",
" sheet_count = len(workbook.sheet_names())\n",
"\n",
" # 获取所有sheet的名称\n",
" sheet_names = workbook.sheet_names()\n",
"\n",
" new_workbook = xlwt.Workbook()\n",
" for i in range(sheet_count):\n",
" # 获取当前sheet\n",
" sheet = workbook.sheet_by_index(i)\n",
"\n",
" # 获取sheet的行数和列数\n",
" row_count = sheet.nrows\n",
" col_count = sheet.ncols\n",
" # 获取原有数据\n",
" data = []\n",
" for row in range(row_count):\n",
" row_data = []\n",
" for col in range(col_count):\n",
" row_data.append(sheet.cell_value(row, col))\n",
" data.append(row_data)\n",
"\n",
" # 创建xlwt的Workbook对象\n",
" # 创建sheet\n",
" new_sheet = new_workbook.add_sheet(sheet_names[i])\n",
"\n",
"\n",
" current_year_month_row = 0\n",
" # 将原有的数据写入新的sheet\n",
" for row in range(row_count):\n",
" for col in range(col_count):\n",
" col0 = data[row][0]\n",
" # print(\"col0\",col0[:7])\n",
" if col0[:7] == current_year_month:\n",
" current_year_month_row += 1\n",
" break\n",
" new_sheet.write(row, col, data[row][col])\n",
"\n",
"\n",
" # print(\"current_year_month_row\",current_year_month_row)\n",
" if i == 0:\n",
" rowFlag = 0\n",
" # 查看每组数据\n",
" for date, group in grouped:\n",
" new_sheet.write(row_count + rowFlag - current_year_month_row, 0, date)\n",
" for j in range(len(dataItemNoList)):\n",
" dataItemNo = dataItemNoList[j]\n",
"\n",
" # for dataItemNo in dataItemNoList:\n",
" if group[group[\"dataItemNo\"] == dataItemNo][\"dataValue\"].values:\n",
"\n",
" new_sheet.write(row_count + rowFlag - current_year_month_row, j + 1, group[group[\"dataItemNo\"] == dataItemNo][\"dataValue\"].values[0])\n",
"\n",
" rowFlag += 1\n",
"\n",
"\n",
" # 保存新的xls文件\n",
" new_workbook.save(\"沥青数据项.xls\")\n",
"\n",
"\n",
"\n",
"\n",
"def queryDataListItemNos():\n",
" df = pd.read_excel('沥青数据项.xls')\n",
" dataItemNoList = df.iloc[0].tolist()[1:]\n",
"\n",
" token = get_head_auth()\n",
" if not token:\n",
" return\n",
"\n",
" # 获取当前日期\n",
" current_date = datetime.datetime.now()\n",
"\n",
" # 获取当月1日\n",
" first_day_of_month = current_date.replace(day=1)\n",
"\n",
" # 格式化为 YYYYMMDD 格式\n",
" dateEnd = current_date.strftime('%Y%m%d')\n",
" dateStart = first_day_of_month.strftime('%Y%m%d')\n",
"\n",
" search_value = get_queryDataListItemNos_value(token, queryDataListItemNos_url, dataItemNoList, dateStart, dateEnd)\n",
"\n",
"\n",
" data_df = pd.DataFrame(search_value)\n",
"\n",
" data_df[\"dataDate\"] = pd.to_datetime(data_df[\"dataDate\"])\n",
" data_df[\"dataDate\"] = data_df[\"dataDate\"].dt.strftime('%Y-%m-%d')\n",
" save_queryDataListItemNos_xls(data_df,dataItemNoList)\n",
"\n",
"\n",
"if __name__ == \"__main__\":\n",
" pass\n",
" # 需要单独运行放开\n",
"\n",
"# start()\n",
"\n",
" # 每天定时12点运行\n",
@ -767,9 +894,17 @@
" # current_time = time.strftime(\"%H:%M:%S\", time.localtime())\n",
" # current_time_1 = time.strftime(\"%H:%M:%S\", time.localtime())\n",
"\n",
" # 获取当月的数据写入到指定文件\n",
" # queryDataListItemNos()\n",
"\n",
" # # 判断当前时间是否为执行任务的时间点\n",
" # if current_time == \"12:00:00\":\n",
" # print(\"执行定时任务\")\n",
"\n",
" # 这个函数,获取当天数据,\n",
" # 预测训练,\n",
" # 预测结果上传\n",
"\n",
" # start()\n",
"\n",
" # # 休眠1秒钟避免过多占用CPU资源\n",
@ -777,6 +912,8 @@
" \n",
" # elif current_time_1 == \"20:00:00\":\n",
" # print(\"更新数据\")\n",
"\n",
" # 这个函数,获取当天数据,保存\n",
" # start_1()\n",
" # time.sleep(1)\n",
"\n",
@ -2270,7 +2407,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "base",
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
@ -2284,7 +2421,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
"version": "3.12.4"
}
},
"nbformat": 4,

320
config_shiyoujiao.py Normal file
View File

@ -0,0 +1,320 @@
import logging
import os
import logging.handlers
import datetime
from lib.tools import MySQLDB,SQLiteHandler
# eta 接口token
APPID = "XNLDvxZHHugj7wJ7"
SECRET = "iSeU4s6cKKBVbt94htVY1p0sqUMqb2xa"
# eta 接口url
sourcelisturl = 'http://10.189.2.78:8108/v1/edb/source/list'
classifylisturl = 'http://10.189.2.78:8108/v1/edb/classify/list?ClassifyType='
uniquecodedataurl = 'http://10.189.2.78:8108/v1/edb/data?UniqueCode=4991c37becba464609b409909fe4d992&StartDate=2024-02-01'
classifyidlisturl = 'http://10.189.2.78:8108/v1/edb/list?ClassifyId='
edbcodedataurl = 'http://10.189.2.78:8108/v1/edb/data?EdbCode='
edbdatapushurl = 'http://10.189.2.78:8108/v1/edb/push'
edbdeleteurl = 'http://10.189.2.78:8108/v1/edb/business/edb/del'
edbbusinessurl = 'http://10.189.2.78:8108/v1/edb/business/data/del'
edbcodelist = ['ID01385938','lmcads03 lme comdty',
'GC1 COMB Comdty',
'C2404171822',
'dxy curncy',
'S5443199 ',
'S5479800',
'S5443108',
'H7358586',
'LC3FM1 INDEX',
'CNY REGN Curncy',
's0105897',
'M0067419',
'M0066351',
'S0266372',
'S0266438',
'S0266506',
'ID01384463']
# 临时写死用指定的列,与上面的edbcode对应后面更改
edbnamelist = [
'ds','y',
'LME铜价',
'黄金连1合约',
'Brent-WTI',
'美元指数',
'甲醇鲁南价格',
'甲醇太仓港口价格',
'山东丙烯主流价',
'丙烷(山东)',
'FEI丙烷 M1',
'在岸人民币汇率',
'南华工业品指数',
'PVC期货主力',
'PE期货收盘价',
'PP连续-1月',
'PP连续-5月',
'PP连续-9月',
'PP拉丝L5E89出厂价华北第二区域内蒙古久泰新材料'
]
edbcodenamedict = {
'ID01385938':'PP拉丝1102K市场价青州国家能源宁煤',
'ID01384463':'PP拉丝L5E89出厂价华北第二区域内蒙古久泰新材料',
'lmcads03 lme comdty':'LME铜价',
'GC1 COMB Comdty':'黄金连1合约',
'C2404171822':'Brent-WTI',
'dxy curncy':'美元指数',
'S5443199 ':'甲醇鲁南价格',
'S5479800':'甲醇太仓港口价格',
'S5443108':'山东丙烯主流价',
'H7358586':'丙烷(山东)',
'LC3FM1 INDEX':'FEI丙烷 M1',
'CNY REGN Curncy':'在岸人民币汇率',
's0105897':'南华工业品指数',
'M0067419':'PVC期货主力',
'M0066351':'PE期货收盘价',
'S0266372':'PP连续-1月',
'S0266438':'PP连续-5月',
'S0266506':'PP连续-9月',
}
# eta自有数据指标编码
modelsindex = {
'NHITS': 'SELF0000077',
'Informer':'SELF0000078',
'LSTM':'SELF0000079',
'iTransformer':'SELF0000080',
'TSMixer':'SELF0000081',
'TSMixerx':'SELF0000082',
'PatchTST':'SELF0000083',
'RNN':'SELF0000084',
'GRU':'SELF0000085',
'TCN':'SELF0000086',
'BiTCN':'SELF0000087',
'DilatedRNN':'SELF0000088',
'MLP':'SELF0000089',
'DLinear':'SELF0000090',
'NLinear':'SELF0000091',
'TFT':'SELF0000092',
'FEDformer':'SELF0000093',
'StemGNN':'SELF0000094',
'MLPMultivariate':'SELF0000095',
'TiDE':'SELF0000096',
'DeepNPTS':'SELF0000097'
}
# eta 上传预测结果的请求体,后面发起请求的时候更改 model datalist 数据
data = {
"IndexCode": "",
"IndexName": "价格预测模型",
"Unit": "",
"Frequency": "日度",
"SourceName": f"价格预测",
"Remark": 'ddd',
"DataList": [
{
"Date": "2024-05-02",
"Value": 333444
}
]
}
# eta 分类
# level3才可以获取到数据所以需要人工把能源化工下所有的level3级都找到
# url = 'http://10.189.2.78:8108/v1/edb/list?ClassifyId=1214'
#ParentId ":1160, 能源化工
# ClassifyId ":1214,原油 3912 石油焦
#ParentId ":1214,",就是原油下所有的数据。
ClassifyId = 3707
############################################################################################################### 变量定义--测试环境
server_host = '192.168.100.53'
login_pushreport_url = f"http://{server_host}:8080/jingbo-dev/api/server/login"
upload_url = f"http://{server_host}:8080/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave"
upload_warning_url = f"http://{server_host}:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/save"
query_data_list_item_nos_url = f"http://{server_host}:8080/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos"
login_data = {
"data": {
"account": "api_test",
# "password": "MmVmNzNlOWI0MmY0ZDdjZGUwNzE3ZjFiMDJiZDZjZWU=", # Shihua@123456
"password": "ZTEwYWRjMzk0OWJhNTlhYmJlNTZlMDU3ZjIwZjg4M2U=", # 123456
"tenantHashCode": "8a4577dbd919675758d57999a1e891fe",
"terminal": "API"
},
"funcModule": "API",
"funcOperation": "获取token"
}
upload_data = {
"funcModule":'研究报告信息',
"funcOperation":'上传聚烯烃PP价格预测报告',
"data":{
"groupNo":'000128', # 用户组编号
"ownerAccount":'arui', #报告所属用户账号
"reportType":'OIL_PRICE_FORECAST', # 报告类型固定为OIL_PRICE_FORECAST
"fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', #文件名称
"fileBase64": '' ,#文件内容base64
"categoryNo":'yyjgycbg', # 研究报告分类编码
"smartBusinessClassCode":'JXTJGYCBG', #分析报告分类编码
"reportEmployeeCode":"E40116", # 报告人
"reportDeptCode" :"D0044" ,# 报告部门
"productGroupCode":"RAW_MATERIAL" # 商品分类
}
}
warning_data = {
"groupNo":'000128', # 用户组编号
"funcModule":'原油特征停更预警',
"funcOperation":'原油特征停更预警',
"data":{
'WARNING_TYPE_NAME':'特征数据停更预警',
'WARNING_CONTENT':'',
'WARNING_DATE':''
}
}
query_data_list_item_nos_data = {
"funcModule": "数据项",
"funcOperation": "查询",
"data": {
"dateStart":"20200101",
"dateEnd":"20241231",
"dataItemNoList":["Brentzdj","Brentzgj"] # 数据项编码,代表 brent最低价和最高价
}
}
# 北京环境数据库
host = '192.168.101.27'
port = 3306
dbusername ='root'
password = '123456'
dbname = 'jingbo_test'
table_name = 'v_tbl_crude_oil_warning'
### 开关
is_train = False # 是否训练
is_debug = True # 是否调试
is_eta = True # 是否使用eta接口
is_market = False # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
is_timefurture = True # 是否使用时间特征
is_fivemodels = False # 是否使用之前保存的最佳的5个模型
is_edbcode = False # 特征使用edbcoding列表中的
is_edbnamelist = False # 自定义特征对应上面的edbnamelist
is_update_eta = False # 预测结果上传到eta
is_update_report = True # 是否上传报告
is_update_warning_data = False # 是否上传预警数据
is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 0 为不删除0.6 表示删除相关性小于0.6的特征
is_del_tow_month = True # 是否删除两个月不更新的特征
# 连接到数据库
db_mysql = MySQLDB(host=host, user=dbusername, password=password, database=dbname)
db_mysql.connect()
print("数据库连接成功",host,dbname,dbusername)
# 数据截取日期
start_year = 2020 # 数据开始年份
end_time = '' # 数据截取日期
freq = 'B' # 时间频率,"D": 天 "W": 周"M": 月"Q": 季度"A": 年 "H": 小时 "T": 分钟 "S": 秒 "B": 工作日
delweekenday = True if freq == 'B' else False # 是否删除周末数据
is_corr = False # 特征是否参与滞后领先提升相关系数
add_kdj = False # 是否添加kdj指标
if add_kdj and is_edbnamelist:
edbnamelist = edbnamelist+['K','D','J']
### 模型参数
y = 'AVG-金能大唐久泰青州'
avg_cols = [
'PP拉丝1102K出厂价青州国家能源宁煤',
'PP拉丝L5E89出厂价华北第二区域内蒙古久泰新材料',
'PP拉丝L5E89出厂价河北、鲁北大唐内蒙多伦',
'PP拉丝HP550J市场价青岛金能化学'
]
offsite = 80
offsite_col = ['PP拉丝HP550J市场价青岛金能化学']
horizon =5 # 预测的步长
input_size = 40 # 输入序列长度
train_steps = 50 if is_debug else 1000 # 训练步数,用来限定epoch次数
val_check_steps = 30 # 评估频率
early_stop_patience_steps = 5 # 早停的耐心步数
# --- 交叉验证用的参数
test_size = 200 # 测试集大小定义100后面使用的时候重新赋值
val_size = test_size # 验证集大小,同测试集大小
### 特征筛选用到的参数
k = 100 # 特征筛选数量如果是0或者值比特征数量大代表全部特征
corr_threshold = 0.6 # 相关性大于0.6的特征
rote = 0.06 # 绘图上下界阈值
### 计算准确率
weight_dict = [0.4,0.15,0.1,0.1,0.25] # 权重
### 文件
data_set = '石油焦指标数据.xlsx' # 数据集文件
dataset = 'shiyoujiaodataset' # 数据集文件夹
# 数据库名称
db_name = os.path.join(dataset,'jbsh_juxiting.db')
sqlitedb = SQLiteHandler(db_name)
sqlitedb.connect()
settings = f'{input_size}-{horizon}-{train_steps}--{k}-{data_set}-{y}'
# 获取日期时间
# now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') # 获取当前日期时间
now = datetime.datetime.now().strftime('%Y-%m-%d') # 获取当前日期时间
reportname = f'PP大模型预测报告--{end_time}.pdf' # 报告文件名
reportname = reportname.replace(':', '-') # 替换冒号
if end_time == '':
end_time = now
### 邮件配置
username='1321340118@qq.com'
passwd='wgczgyhtyyyyjghi'
# recv=['liurui_test@163.com','52585119@qq.com']
recv=['liurui_test@163.com']
# recv=['liurui_test@163.com']
title='reportname'
content=y+'预测报告请看附件'
file=os.path.join(dataset,'reportname')
# file=os.path.join(dataset,'14-7-50--100-原油指标数据.xlsx-Brent连1合约价格--20240731175936-预测报告.pdf')
ssl=True
### 日志配置
# 创建日志目录(如果不存在)
log_dir = 'logs'
if not os.path.exists(log_dir):
os.makedirs(log_dir)
# 配置日志记录器
logger = logging.getLogger('my_logger')
logger.setLevel(logging.INFO)
# 配置文件处理器,将日志记录到文件
file_handler = logging.handlers.RotatingFileHandler(os.path.join(log_dir, 'pricepredict.log'), maxBytes=1024 * 1024, backupCount=5)
file_handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
# 配置控制台处理器,将日志打印到控制台
console_handler = logging.StreamHandler()
console_handler.setFormatter(logging.Formatter('%(message)s'))
# 将处理器添加到日志记录器
logger.addHandler(file_handler)
logger.addHandler(console_handler)
# logger.info('当前配置:'+settings)

View File

@ -295,7 +295,7 @@ bdwd_items = {
# 京博测试环境
host = 'rm-2zehj3r1n60ttz9x5ko.mysql.rds.aliyuncs.com'
port = 3306
dbusername ='jingbo'
dbusername = 'jingbo'
password = 'shihua@123'
dbname = 'jingbo-test'
@ -338,7 +338,7 @@ if add_kdj and is_edbnamelist:
edbnamelist = edbnamelist+['K', 'D', 'J']
# 模型参数
y = '煅烧焦山东高硫(高端S < 3.5,普货)(元/吨)'
y = '煅烧焦华东中硫(高端S < 3.0,钒 < 400)(元/吨)'
avg_cols = [
]

View File

@ -18,93 +18,140 @@ edbcodedataurl = 'http://10.189.2.78:8108/v1/edb/data?EdbCode='
edbdatapushurl = 'http://10.189.2.78:8108/v1/edb/push'
edbdeleteurl = 'http://10.189.2.78:8108/v1/edb/business/edb/del'
edbbusinessurl = 'http://10.189.2.78:8108/v1/edb/business/data/del'
edbcodelist = ['ID01385938', 'lmcads03 lme comdty',
'GC1 COMB Comdty',
'C2404171822',
'dxy curncy',
'S5443199 ',
'S5479800',
'S5443108',
'H7358586',
'LC3FM1 INDEX',
'CNY REGN Curncy',
's0105897',
'M0067419',
'M0066351',
'S0266372',
'S0266438',
'S0266506',
'ID01384463']
# 临时写死用指定的列,与上面的edbcode对应后面更改
edbnamelist = [
'ds', 'y',
'LME铜价',
'黄金连1合约',
'Brent-WTI',
'美元指数',
'甲醇鲁南价格',
'甲醇太仓港口价格',
'山东丙烯主流价',
'丙烷(山东)',
'FEI丙烷 M1',
'在岸人民币汇率',
'南华工业品指数',
'PVC期货主力',
'PE期货收盘价',
'PP连续-1月',
'PP连续-5月',
'PP连续-9月',
'PP拉丝L5E89出厂价华北第二区域内蒙古久泰新材料'
]
edbcodenamedict = {
'ID01385938': 'PP拉丝1102K市场价青州国家能源宁煤',
'ID01384463': 'PP拉丝L5E89出厂价华北第二区域内蒙古久泰新材料',
'lmcads03 lme comdty': 'LME铜价',
'GC1 COMB Comdty': '黄金连1合约',
'C2404171822': 'Brent-WTI',
'dxy curncy': '美元指数',
'S5443199 ': '甲醇鲁南价格',
'S5479800': '甲醇太仓港口价格',
'S5443108': '山东丙烯主流价',
'H7358586': '丙烷(山东)',
'LC3FM1 INDEX': 'FEI丙烷 M1',
'CNY REGN Curncy': '在岸人民币汇率',
's0105897': '南华工业品指数',
'M0067419': 'PVC期货主力',
'M0066351': 'PE期货收盘价',
'S0266372': 'PP连续-1月',
'S0266438': 'PP连续-5月',
'S0266506': 'PP连续-9月',
'C2403287411': '华北高硫焦与等热值动力煤价格对比',
'C2403282801': '华东高硫焦与等热值动力煤价格对比',
'ID00150321': '石油焦2 # A市场低端价山东',
'ID00150329': '石油焦2 # A市场主流价山东',
'ID00150325': '石油焦2 # A市场高端价山东',
'ID00150333': '石油焦2 # B市场低端价山东',
'ID00150357': '石油焦2 # B市场主流价山东',
'ID00150345': '石油焦2 # B市场高端价山东',
'ID01101276': '高硫焦4B出厂价山东青岛炼化',
'ID00150417': '石油焦:高硫焦:市场低端价:华北地区(日)',
'ID00150425': '石油焦:高硫焦:市场低端价:华南地区(日)',
'ID00150437': '石油焦:高硫焦:市场高端价:华北地区(日)',
'ID00150441': '石油焦:高硫焦:市场高端价:华东地区(日)',
'ID00150445': '石油焦:高硫焦:市场高端价:华南地区(日)',
'ID00150449': '石油焦:高硫焦:市场高端价:西北地区(日)',
'ID00150453': '石油焦:高硫焦:市场高端价:西南地区(日)',
'ID01300358': '石油焦3 # C市场低端价山东',
'ID01300357': '石油焦3 # C市场高端价山东',
'ID00150377': '石油焦3 # :市场主流价:华中地区(日)',
'ID01387678': '煅烧焦中硫3 % S市场价华中地区',
'ID01387656': '煅烧焦中硫3 % S市场价山东',
'ID00150381': '石油焦3 # A市场低端价山东',
'ID00150397': '石油焦3 # B市场低端价山东',
'ID00150405': '石油焦3 # B市场高端价山东',
'ID00150429': '石油焦:高硫焦:市场低端价:西北地区(日)',
'ID00150433': '石油焦:高硫焦:市场低端价:西南地区(日)',
'ID00150457': '石油焦:高硫焦:市场主流价:华北地区(日)',
'ID00150461': '石油焦:高硫焦:市场主流价:华东地区(日)',
'ID00150465': '石油焦:高硫焦:市场主流价:华南地区(日)',
'ID00150469': '石油焦:高硫焦:市场主流价:西北地区(日)',
'ID00150473': '石油焦:高硫焦:市场主流价:西南地区(日)',
'B3e90b34e4b9e7a6ea3': '石油焦市场均价(元/吨)',
'B8a0ab5357569c385a9': '石油焦海绵焦市场均价(元/吨)',
'B8a920b59fe7effd116': '石油焦4 # -5#市场均价(元/吨)',
'B81e66c7dc542809035': '石油焦海绵焦华东高硫焦(低端)(元/吨)(百川)',
'B6fc631d20e277ce496': '石油焦海绵焦华东高硫焦(高端)(元/吨)(百川)',
'Be9ed3ebd44ad291a3c': '石油焦海绵焦华南高硫焦(低端)(元/吨)(百川)',
'B347350473783e640dc': '石油焦海绵焦华南高硫焦(高端)(元/吨)(百川)',
'B7acab268ac4a419f77': '煅烧焦华北中硫(低端S < 3.0,普货)(元/吨)',
'Beecfb2678481997f68': '煅烧焦山东中硫(高端S < 3.0,普货)(元/吨)',
'B4bc4d186dc0f7d6d96': '煅烧焦华中中硫(高端S < 3.0,普货)(元/吨)',
'B46cc7d0a90155b5bfd': '煅烧焦山东高硫(高端S < 3.5,普货)(元/吨)',
'B4501068048575cd6f1': '煅烧焦西北高硫(S < 4.0,普货)(元/吨)',
'Bfccb234f4c4e047314': '煅烧焦中硫普货市场均价(硫 < 3.0 %)(元/吨)',
'B1133e458cc493d7728': '煅烧焦高硫普货市场均价(元/吨)(百川)',
'B185a597decfc71915a': '预焙阳极山东低端(元/吨)(百川)',
'B16b98ff5f959dfdcad': '负极材料市场参考价(元/吨)(百川)',
'B7ce1371e09479bee56': '人造石墨负极材料中端(元/吨)',
'Bab0904b23e968a3068': '天然石墨负极材料中端(元/吨)',
'B180e67aaa174414553': '中间相碳微球负极材料高端(元/吨)',
'B41c03de42ea84d5c2f': '中间相碳微球负极材料中端(元/吨)',
'B5c3b60680b7bbd92af': '负极材料石墨化国内低端价(元/吨)',
'B1bcde6130de031bd42': '山西 改质沥青(元/吨)',
'Bb9f4a1f6dd32b4ad8a': '山东 改质沥青(元/吨)',
'C2411261557491549': '石油焦市场均价(元/吨)/4DMA',
'C2411271143174617': '石油焦市场均价(元/吨)/9DMA',
'RE00010074': '煅烧焦:中硫焦:生产毛利:山东(周)',
'B9d1acaf80383683da3': '石油焦总产量(周)(吨)',
'Bdaa719a38936c8dd76': '石油焦开工率(周)(% )',
'B9459d549a332b200e7': '石油焦行业总库存(周)(吨)',
'Bce6e098b9518370cff': '石油焦工厂库存(周)(吨)',
'B577ce2809772779710': '石油焦市场库存(周)(吨)',
'B5d8c564c62f3e6b77f': '石油焦成本(周)(吨)',
'B43baa98bcaa06c11a5': '石油焦利润(周)(吨)',
'Bdd0c1361d94081211c': '煅烧石油焦总产量(周)(吨)',
'B65315111fa28951b1e': '煅烧石油焦开工率(周)(% )',
'B2aff5f2632a20027d0': '煅烧石油焦行业总库存(周)(吨)',
'B29fbd31128cd71b212': '煅烧石油焦工厂库存(周)(吨)',
'B7a88313a89d1261c53': '煅烧石油焦成本(周)(吨)',
'Bd4fa36b4decec0aafa': '煅烧石油焦利润(周)(吨)',
'B9bd80eac7df81ffbd4': '预焙阳极总产量(周)(吨)',
'B27074786605f4660d2': '预焙阳极开工率(周)(% )',
'Bdc2a5985ecb56b6a0c': '预焙阳极行业总库存(周)(吨)',
'Bce8511f899e487e5b6': '预焙阳极工厂库存(周)(吨)',
'B13ec89105bd866a2bd': '预焙阳极成本(周)(吨)',
'B66c3abcfa15a2e611c': '预焙阳极利润(周)(吨)',
'Ba3bcf63e6e846cd3f8': '负极材料总产量(周)(吨)',
'B10b8f4c702b72f4ee4': '负极材料开工率(周)(% )',
'Bc25e82dd595c5f92fc': '负极材料行业总库存(周)(吨)',
'B0a14d1936a5e072f25': '负极材料工厂库存(周)(吨)',
'Ba9d192464b78194a48': '负极材料成本(周)(吨)',
'B15d62d9f48ccfa5984': '负极材料利润(周)(吨)',
'B7478e77ca116386afd': '针状焦总产量(周)(吨)',
'Bbe316d65258a4d47f4': '针状焦行业总库存(周)(吨)',
'Bf036a360a5eecb591d': '针状焦工厂库存(周)(吨)',
'Bc43a790c62aa57fc9d': '针状焦成本(周)(吨)',
'B23ebedbb88ff412952': '针状焦利润(周)(吨)',
'C2403286685': '黄骅港动力煤等热值',
'C2403285171': '黄骅等热值动力煤',
'C2403287884': '中硫石油焦煅烧利润',
'W000294': '国内主要港口石油焦出货量(隆重)',
'W000293': '日照港库存(隆重)',
'W000292': '港口总库存(隆重)',
'W000283': '主营石油焦产量(隆重)',
'W000282': '地炼石油焦产量(隆重)',
'W000281': '中国石油焦产量(隆重)',
'W000280': '主营石油焦开工负荷率(隆重)',
'W000279': '地炼石油焦开工负荷率(隆重)',
}
# eta自有数据指标编码
edbcodelist = edbcodenamedict.keys()
# 临时写死用指定的列,与上面的edbcode对应后面更改
edbnamelist = ['ds', 'y']+[edbcodenamedict[edbcodename]
for edbcodename in edbcodelist]
# eta自有数据指标编码石油焦铝用还没新增暂且留空
modelsindex = {
'NHITS': 'SELF0000077',
'Informer': 'SELF0000078',
'LSTM': 'SELF0000079',
'iTransformer': 'SELF0000080',
'TSMixer': 'SELF0000081',
'TSMixerx': 'SELF0000082',
'PatchTST': 'SELF0000083',
'RNN': 'SELF0000084',
'GRU': 'SELF0000085',
'TCN': 'SELF0000086',
'BiTCN': 'SELF0000087',
'DilatedRNN': 'SELF0000088',
'MLP': 'SELF0000089',
'DLinear': 'SELF0000090',
'NLinear': 'SELF0000091',
'TFT': 'SELF0000092',
'FEDformer': 'SELF0000093',
'StemGNN': 'SELF0000094',
'MLPMultivariate': 'SELF0000095',
'TiDE': 'SELF0000096',
'DeepNPTS': 'SELF0000097'
}
# 百川数据指标编码
baichuanidnamedict = {
'1588348470396480901': '石油焦滨州-友泰',
'1588348470396480903': '石油焦东营-海科瑞林',
'1588348470396480911': '石油焦东营-亚通',
'1588348470396480888': '石油焦沧州-鑫海',
'1588348470396480888': '江苏鑫海',
'1588348470396480917': '石油焦东营-万通',
'1588348470396480925': '石油焦东营-齐润',
'1588348470396481084': '石油焦东营-尚能4 # ',
'1588348470396480930': '石油焦潍坊-寿光鲁清',
'1588348470396480929': '石油焦滨州-鑫岳',
'1588348470396480650': '煅烧石油焦东营-启德-1',
'1588348470396481053': '煅烧石油焦东营-启德-2',
'1588348470396480645': '煅烧石油焦东营-山东汇宇-1',
'1588348470396481049': '煅烧石油焦东营-山东汇宇-2',
'1588348470396481098': '煅烧石油焦东营-山东汇宇-3',
'1588348470396481108': '煅烧石油焦东营-山东汇宇-4'
}
# baichuanidnamedict = {'1588348470396475286': 'test1', '1666': 'test2'} # 北京环境测试用
# eta 上传预测结果的请求体,后面发起请求的时候更改 model datalist 数据
data = {
@ -132,12 +179,17 @@ ClassifyId = 3707
# 变量定义--测试环境
server_host = '192.168.100.53'
server_host = '192.168.100.53' # 内网
# server_host = '183.242.74.28' # 外网
login_pushreport_url = f"http://{server_host}:8080/jingbo-dev/api/server/login"
# 上传报告
upload_url = f"http://{server_host}:8080/jingbo-dev/api/analysis/reportInfo/researchUploadReportSave"
# 停更预警
upload_warning_url = f"http://{server_host}:8080/jingbo-dev/api/basicBuiness/crudeOilWarning/save"
# 查询数据项编码
query_data_list_item_nos_url = f"http://{server_host}:8080/jingbo-dev/api/warehouse/dwDataItem/queryDataListItemNos"
# 上传数据项值
push_data_value_list_url = f"http://{server_host}:8080/jingbo-dev/api/dw/dataValue/pushDataValueList"
login_data = {
"data": {
@ -152,16 +204,16 @@ login_data = {
}
upload_data = {
"groupNo": '', # 用户组id
"funcModule": '研究报告信息',
"funcOperation": '上传聚烯烃PP价格预测报告',
"funcOperation": '上传原油价格预测报告',
"data": {
"groupNo": '000128', # 用户组编号
"ownerAccount": 'arui', # 报告所属用户账号
"reportType": 'OIL_PRICE_FORECAST', # 报告类型固定为OIL_PRICE_FORECAST
"fileName": '2000-40-5-50--100-原油指标数据.xlsx-Brent活跃合约--2024-09-06-15-01-29-预测报告.pdf', # 文件名称
"fileBase64": '', # 文件内容base64
"categoryNo": 'yyjgycbg', # 研究报告分类编码
"smartBusinessClassCode": 'JXTJGYCBG', # 分析报告分类编码
"smartBusinessClassCode": 'YCJGYCBG', # 分析报告分类编码
"reportEmployeeCode": "E40116", # 报告人
"reportDeptCode": "D0044", # 报告部门
"productGroupCode": "RAW_MATERIAL" # 商品分类
@ -170,7 +222,7 @@ upload_data = {
warning_data = {
"groupNo": '000128', # 用户组编号
"groupNo": '', # 用户组id
"funcModule": '原油特征停更预警',
"funcOperation": '原油特征停更预警',
"data": {
@ -190,19 +242,60 @@ query_data_list_item_nos_data = {
}
}
push_data_value_list_data = {
"funcModule": "数据表信息列表",
"funcOperation": "新增",
"data": [
{"dataItemNo": "91230600716676129",
"dataDate": "20230113",
"dataStatus": "add",
"dataValue": 100.11
},
{"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY",
"dataDate": "20230113",
"dataStatus": "add",
"dataValue": 100.55
},
{"dataItemNo": "91230600716676129P|ETHYL_BEN|CAPACITY",
"dataDate": "20230113",
"dataStatus": "add",
"dataValue": 100.55
}
]
}
# 八大维度数据项编码
bdwd_items = {
'ciri': 'syjphycbdwdcr',
'benzhou': 'syjphycbdwdbz',
'cizhou': 'syjlyycbdwdcz',
'gezhou': 'syjlyycbdwdgz',
'ciyue': 'syjlyycbdwdcy',
'cieryue': 'syjlyycbdwdcey',
'cisanyue': 'syjlyycbdwdcsy',
'cisiyue': 'syjlyycbdwdcsiy',
}
# 北京环境数据库
host = '192.168.101.27'
# host = '192.168.101.27'
# port = 3306
# dbusername = 'root'
# password = '123456'
# dbname = 'jingbo_test'
# 京博测试环境
host = 'rm-2zehj3r1n60ttz9x5ko.mysql.rds.aliyuncs.com'
port = 3306
dbusername = 'root'
password = '123456'
dbname = 'jingbo_test'
dbusername = 'jingbo'
password = 'shihua@123'
dbname = 'jingbo-test'
table_name = 'v_tbl_crude_oil_warning'
baichuan_table_name = 'V_TBL_BAICHUAN_YINGFU_VALUE'
# select BAICHUAN_ID, DATA_DATE, DATA_VALUE from V_TBL_BAICHUAN_YINGFU_VALUE where BAICHUAN_ID in ('1588348470396475286', '1666')
# 开关
is_train = False # 是否训练
is_debug = True # 是否调试
is_train = True # 是否训练
is_debug = False # 是否调试
is_eta = True # 是否使用eta接口
is_market = False # 是否通过市场信息平台获取特征 ,在is_eta 为true 的情况下生效
is_timefurture = True # 是否使用时间特征
@ -212,6 +305,7 @@ is_edbnamelist = False # 自定义特征对应上面的edbnamelist
is_update_eta = False # 预测结果上传到eta
is_update_report = True # 是否上传报告
is_update_warning_data = False # 是否上传预警数据
is_update_predict_value = True # 是否上传预测值到市场信息平台
is_del_corr = 0.6 # 是否删除相关性高的特征,取值为 0-1 0 为不删除0.6 表示删除相关性小于0.6的特征
is_del_tow_month = True # 是否删除两个月不更新的特征
@ -234,15 +328,12 @@ if add_kdj and is_edbnamelist:
edbnamelist = edbnamelist+['K', 'D', 'J']
# 模型参数
y = 'AVG-金能大唐久泰青州'
y = '煅烧焦山东高硫(高端S < 3.5,普货)(元/吨)'
avg_cols = [
'PP拉丝1102K出厂价青州国家能源宁煤',
'PP拉丝L5E89出厂价华北第二区域内蒙古久泰新材料',
'PP拉丝L5E89出厂价河北、鲁北大唐内蒙多伦',
'PP拉丝HP550J市场价青岛金能化学'
]
offsite = 80
offsite_col = ['PP拉丝HP550J市场价青岛金能化学']
offsite_col = []
horizon = 5 # 预测的步长
input_size = 40 # 输入序列长度
train_steps = 50 if is_debug else 1000 # 训练步数,用来限定epoch次数
@ -262,19 +353,19 @@ weight_dict = [0.4, 0.15, 0.1, 0.1, 0.25] # 权重
# 文件
data_set = '石油焦指标数据.xlsx' # 数据集文件
dataset = 'shiyoujiaodataset' # 数据集文件夹
data_set = '石油焦铝用指标数据.xlsx' # 数据集文件
dataset = 'shiyoujiaolvyongdataset' # 数据集文件夹
# 数据库名称
db_name = os.path.join(dataset, 'jbsh_juxiting.db')
db_name = os.path.join(dataset, 'jbsh_shiyoujiao_lvyong.db')
sqlitedb = SQLiteHandler(db_name)
sqlitedb.connect()
settings = f'{input_size}-{horizon}-{train_steps}--{k}-{data_set}-{y}'
settings = f'{input_size}-{horizon}-{train_steps}--{k}-{data_set}'
# 获取日期时间
# now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') # 获取当前日期时间
now = datetime.datetime.now().strftime('%Y-%m-%d') # 获取当前日期时间
reportname = f'PP大模型预测报告--{end_time}.pdf' # 报告文件名
reportname = f'石油焦铝用大模型日度预测报告--{end_time}.pdf' # 报告文件名
reportname = reportname.replace(':', '-') # 替换冒号
if end_time == '':
end_time = now

301
main_shiyoujiao.py Normal file
View File

@ -0,0 +1,301 @@
# 读取配置
from lib.dataread import *
from lib.tools import SendMail,exception_logger
from models.nerulforcastmodels import ex_Model_Juxiting,model_losss,model_losss_juxiting,brent_export_pdf,tansuanli_export_pdf,pp_export_pdf,model_losss_juxiting
import glob
import torch
torch.set_float32_matmul_precision("high")
def predict_main():
"""
主预测函数用于从 ETA 获取数据处理数据训练模型并进行预测
参数:
signature (BinanceAPI): Binance API 实例
etadata (EtaReader): ETA 数据读取器实例
is_eta (bool): 是否从 ETA 获取数据
data_set (str): 数据集名称
dataset (str): 数据集路径
add_kdj (bool): 是否添加 KDJ 指标
is_timefurture (bool): 是否添加时间衍生特征
end_time (str): 结束时间
is_edbnamelist (bool): 是否使用 EDB 名称列表
edbnamelist (list): EDB 名称列表
y (str): 预测目标列名
sqlitedb (SQLiteDB): SQLite 数据库实例
is_corr (bool): 是否进行相关性分析
horizon (int): 预测时域
input_size (int): 输入数据大小
train_steps (int): 训练步数
val_check_steps (int): 验证检查步数
early_stop_patience_steps (int): 早停耐心步数
is_debug (bool): 是否调试模式
dataset (str): 数据集名称
is_train (bool): 是否训练模型
is_fivemodels (bool): 是否使用五个模型
val_size (float): 验证集大小
test_size (float): 测试集大小
settings (dict): 模型设置
now (str): 当前时间
etadata (EtaReader): ETA 数据读取器实例
modelsindex (list): 模型索引列表
data (str): 数据类型
is_eta (bool): 是否从 ETA 获取数据
返回:
None
"""
global end_time
signature = BinanceAPI(APPID, SECRET)
etadata = EtaReader(signature=signature,
classifylisturl=classifylisturl,
classifyidlisturl=classifyidlisturl,
edbcodedataurl=edbcodedataurl,
edbcodelist=edbcodelist,
edbdatapushurl=edbdatapushurl,
edbdeleteurl=edbdeleteurl,
edbbusinessurl=edbbusinessurl
)
# 获取数据
if is_eta:
logger.info('从eta获取数据...')
signature = BinanceAPI(APPID, SECRET)
etadata = EtaReader(signature=signature,
classifylisturl=classifylisturl,
classifyidlisturl=classifyidlisturl,
edbcodedataurl=edbcodedataurl,
edbcodelist=edbcodelist,
edbdatapushurl=edbdatapushurl,
edbdeleteurl=edbdeleteurl,
edbbusinessurl=edbbusinessurl,
)
df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_shiyoujiao_data(data_set=data_set, dataset=dataset) # 原始数据,未处理
if is_market:
logger.info('从市场信息平台获取数据...')
try:
# 如果是测试环境最高价最低价取excel文档
if server_host == '192.168.100.53':
logger.info('从excel文档获取最高价最低价')
df_zhibiaoshuju = get_high_low_data(df_zhibiaoshuju)
else:
logger.info('从市场信息平台获取数据')
df_zhibiaoshuju = get_market_data(end_time,df_zhibiaoshuju)
except :
logger.info('最高最低价拼接失败')
# 保存到xlsx文件的sheet表
with pd.ExcelWriter(os.path.join(dataset,data_set)) as file:
df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False)
df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False)
# 数据处理
df = datachuli_juxiting(df_zhibiaoshuju, df_zhibiaoliebiao, y=y, dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture,
end_time=end_time)
else:
# 读取数据
logger.info('读取本地数据:' + os.path.join(dataset, data_set))
df,df_zhibiaoliebiao = getdata_juxiting(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj,
is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理
# 更改预测列名称
df.rename(columns={y: 'y'}, inplace=True)
if is_edbnamelist:
df = df[edbnamelist]
df.to_csv(os.path.join(dataset, '指标数据.csv'), index=False)
# 保存最新日期的y值到数据库
# 取第一行数据存储到数据库中
first_row = df[['ds', 'y']].tail(1)
# 判断y的类型是否为float
if not isinstance(first_row['y'].values[0], float):
logger.info(f'{end_time}预测目标数据为空,跳过')
return None
# 将最新真实值保存到数据库
if not sqlitedb.check_table_exists('trueandpredict'):
first_row.to_sql('trueandpredict', sqlitedb.connection, index=False)
else:
for row in first_row.itertuples(index=False):
row_dict = row._asdict()
row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S')
check_query = sqlitedb.select_data('trueandpredict', where_condition=f"ds = '{row.ds}'")
if len(check_query) > 0:
set_clause = ", ".join([f"{key} = '{value}'" for key, value in row_dict.items()])
sqlitedb.update_data('trueandpredict', set_clause, where_condition=f"ds = '{row.ds}'")
continue
sqlitedb.insert_data('trueandpredict', tuple(row_dict.values()), columns=row_dict.keys())
# 更新accuracy表的y值
if not sqlitedb.check_table_exists('accuracy'):
pass
else:
update_y = sqlitedb.select_data('accuracy',where_condition="y is null")
if len(update_y) > 0:
logger.info('更新accuracy表的y值')
# 找到update_y 中ds且df中的y的行
update_y = update_y[update_y['ds']<=end_time]
logger.info(f'要更新y的信息{update_y}')
# try:
for row in update_y.itertuples(index=False):
try:
row_dict = row._asdict()
yy = df[df['ds']==row_dict['ds']]['y'].values[0]
LOW = df[df['ds']==row_dict['ds']]['Brentzdj'].values[0]
HIGH = df[df['ds']==row_dict['ds']]['Brentzgj'].values[0]
sqlitedb.update_data('accuracy', f"y = {yy},LOW_PRICE = {LOW},HIGH_PRICE = {HIGH}", where_condition=f"ds = '{row_dict['ds']}'")
except:
logger.info(f'更新accuracy表的y值失败{row_dict}')
# except Exception as e:
# logger.info(f'更新accuracy表的y值失败{e}')
import datetime
# 判断当前日期是不是周一
is_weekday = datetime.datetime.now().weekday() == 0
if is_weekday:
logger.info('今天是周一,更新预测模型')
# 计算最近60天预测残差最低的模型名称
model_results = sqlitedb.select_data('trueandpredict', order_by="ds DESC", limit="60")
# 删除空值率为90%以上的列
if len(model_results) > 10:
model_results = model_results.dropna(thresh=len(model_results)*0.1,axis=1)
# 删除空行
model_results = model_results.dropna()
modelnames = model_results.columns.to_list()[2:-1]
for col in model_results[modelnames].select_dtypes(include=['object']).columns:
model_results[col] = model_results[col].astype(np.float32)
# 计算每个预测值与真实值之间的偏差率
for model in modelnames:
model_results[f'{model}_abs_error_rate'] = abs(model_results['y'] - model_results[model]) / model_results['y']
# 获取每行对应的最小偏差率值
min_abs_error_rate_values = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].min(), axis=1)
# 获取每行对应的最小偏差率值对应的列名
min_abs_error_rate_column_name = model_results.apply(lambda row: row[[f'{model}_abs_error_rate' for model in modelnames]].idxmin(), axis=1)
# 将列名索引转换为列名
min_abs_error_rate_column_name = min_abs_error_rate_column_name.map(lambda x: x.split('_')[0])
# 取出现次数最多的模型名称
most_common_model = min_abs_error_rate_column_name.value_counts().idxmax()
logger.info(f"最近60天预测残差最低的模型名称{most_common_model}")
# 保存结果到数据库
if not sqlitedb.check_table_exists('most_model'):
sqlitedb.create_table('most_model', columns="ds datetime, most_common_model TEXT")
sqlitedb.insert_data('most_model', (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), most_common_model,), columns=('ds', 'most_common_model',))
try:
if is_weekday:
# if True:
logger.info('今天是周一,发送特征预警')
# 上传预警信息到数据库
warning_data_df = df_zhibiaoliebiao.copy()
warning_data_df = warning_data_df[warning_data_df['停更周期']> 3 ][['指标名称', '指标id', '频度','更新周期','指标来源','最后更新时间','停更周期']]
# 重命名列名
warning_data_df = warning_data_df.rename(columns={'指标名称': 'INDICATOR_NAME', '指标id': 'INDICATOR_ID', '频度': 'FREQUENCY', '更新周期': 'UPDATE_FREQUENCY', '指标来源': 'DATA_SOURCE', '最后更新时间': 'LAST_UPDATE_DATE', '停更周期': 'UPDATE_SUSPENSION_CYCLE'})
from sqlalchemy import create_engine
import urllib
global password
if '@' in password:
password = urllib.parse.quote_plus(password)
engine = create_engine(f'mysql+pymysql://{dbusername}:{password}@{host}:{port}/{dbname}')
warning_data_df['WARNING_DATE'] = datetime.date.today().strftime("%Y-%m-%d %H:%M:%S")
warning_data_df['TENANT_CODE'] = 'T0004'
# 插入数据之前查询表数据然后新增id列
existing_data = pd.read_sql(f"SELECT * FROM {table_name}", engine)
if not existing_data.empty:
max_id = existing_data['ID'].astype(int).max()
warning_data_df['ID'] = range(max_id + 1, max_id + 1 + len(warning_data_df))
else:
warning_data_df['ID'] = range(1, 1 + len(warning_data_df))
warning_data_df.to_sql(table_name, con=engine, if_exists='append', index=False)
if is_update_warning_data:
upload_warning_info(len(warning_data_df))
except:
logger.info('上传预警信息到数据库失败')
if is_corr:
df = corr_feature(df=df)
df1 = df.copy() # 备份一下后面特征筛选完之后加入ds y 列用
logger.info(f"开始训练模型...")
row, col = df.shape
now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
ex_Model_Juxiting(df,
horizon=horizon,
input_size=input_size,
train_steps=train_steps,
val_check_steps=val_check_steps,
early_stop_patience_steps=early_stop_patience_steps,
is_debug=is_debug,
dataset=dataset,
is_train=is_train,
is_fivemodels=is_fivemodels,
val_size=val_size,
test_size=test_size,
settings=settings,
now=now,
etadata=etadata,
modelsindex=modelsindex,
data=data,
is_eta=is_eta,
end_time=end_time,
)
logger.info('模型训练完成')
logger.info('训练数据绘图ing')
model_results3 = model_losss_juxiting(sqlitedb)
logger.info('训练数据绘图end')
# 模型报告
logger.info('制作报告ing')
title = f'{settings}--{end_time}-预测报告' # 报告标题
reportname = f'PP大模型预测报告--{end_time}.pdf' # 报告文件名
reportname = reportname.replace(':', '-') # 替换冒号
pp_export_pdf(dataset=dataset,num_models = 5 if is_fivemodels else 22,time=end_time,
reportname=reportname,sqlitedb=sqlitedb),
logger.info('制作报告end')
logger.info('模型训练完成')
# # LSTM 单变量模型
# ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset)
# # lstm 多变量模型
# ex_Lstm_M(df,n_days=input_size,out_days=horizon,is_debug=is_debug,datasetpath=dataset)
# # GRU 模型
# # ex_GRU(df)
# 发送邮件
m = SendMail(
username=username,
passwd=passwd,
recv=recv,
title=title,
content=content,
file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime),
ssl=ssl,
)
# m.send_mail()
if __name__ == '__main__':
# global end_time
# is_on = True
# # 遍历2024-11-25 到 2024-12-3 之间的工作日日期
# for i_time in pd.date_range('2025-1-20', '2025-2-6', freq='B'):
# end_time = i_time.strftime('%Y-%m-%d')
# try:
# predict_main()
# except:
# pass
predict_main()

View File

@ -1,9 +1,9 @@
# 读取配置
from lib.dataread import *
from config_shiyoujiao_puhuo import *
from config_shiyoujiao_lvyong import *
from lib.tools import SendMail, exception_logger
from models.nerulforcastmodels import ex_Model, model_losss_juxiting, tansuanli_export_pdf, pp_export_pdf
from models.nerulforcastmodels import ex_Model, model_losss, shiyoujiao_lvyong_export_pdf
import datetime
import torch
torch.set_float32_matmul_precision("high")
@ -13,14 +13,12 @@ global_config.update({
'logger': logger,
'dataset': dataset,
'y': y,
'offsite_col': offsite_col,
'avg_cols': avg_cols,
'offsite': offsite,
'edbcodenamedict': edbcodenamedict,
'is_debug': is_debug,
'is_train': is_train,
'is_fivemodels': is_fivemodels,
'settings': settings,
'weight_dict': weight_dict,
'baichuanidnamedict': baichuanidnamedict,
# 模型参数
@ -33,6 +31,8 @@ global_config.update({
'test_size': test_size,
'modelsindex': modelsindex,
'rote': rote,
'bdwd_items': bdwd_items,
'baichuanidnamedict': baichuanidnamedict,
# 特征工程开关
'is_del_corr': is_del_corr,
@ -40,6 +40,7 @@ global_config.update({
'is_eta': is_eta,
'is_update_eta': is_update_eta,
'is_fivemodels': is_fivemodels,
'is_update_predict_value': is_update_predict_value,
'early_stop_patience_steps': early_stop_patience_steps,
# 时间参数
@ -58,6 +59,10 @@ global_config.update({
'query_data_list_item_nos_url': query_data_list_item_nos_url,
'query_data_list_item_nos_data': query_data_list_item_nos_data,
# 上传数据项
'push_data_value_list_url': push_data_value_list_url,
'push_data_value_list_data': push_data_value_list_data,
# eta 配置
'APPID': APPID,
'SECRET': SECRET,
@ -69,14 +74,71 @@ global_config.update({
'edbdatapushurl': edbdatapushurl,
'edbdeleteurl': edbdeleteurl,
'edbbusinessurl': edbbusinessurl,
'edbcodenamedict': edbcodenamedict,
'ClassifyId': ClassifyId,
'classifylisturl': classifylisturl,
# 数据库配置
'sqlitedb': sqlitedb,
'db_mysql': db_mysql,
'baichuan_table_name': baichuan_table_name,
})
def push_market_value():
logger.info('发送预测结果到市场信息平台')
# 读取预测数据和模型评估数据
predict_file_path = os.path.join(config.dataset, 'predict.csv')
model_eval_file_path = os.path.join(config.dataset, 'model_evaluation.csv')
try:
predictdata_df = pd.read_csv(predict_file_path)
top_models_df = pd.read_csv(model_eval_file_path)
except FileNotFoundError as e:
logger.error(f"文件未找到: {e}")
return
predictdata = predictdata_df.copy()
# 取模型前十
top_models = top_models_df['模型(Model)'].head(10).tolist()
# 计算前十模型的均值
predictdata_df['top_models_mean'] = predictdata_df[top_models].mean(axis=1)
# 打印日期和前十模型均值
print(predictdata_df[['ds', 'top_models_mean']])
# 准备要推送的数据
first_mean = predictdata_df['top_models_mean'].iloc[0]
last_mean = predictdata_df['top_models_mean'].iloc[-1]
# 保留两位小数
first_mean = round(first_mean, 2)
last_mean = round(last_mean, 2)
predictdata = [
{
"dataItemNo": global_config['bdwd_items']['ciri'],
"dataDate": global_config['end_time'].replace('-', ''),
"dataStatus": "add",
"dataValue": first_mean
},
{
"dataItemNo": global_config['bdwd_items']['benzhou'],
"dataDate": global_config['end_time'].replace('-', ''),
"dataStatus": "add",
"dataValue": last_mean
}
]
print(predictdata)
# 推送数据到市场信息平台
try:
push_market_data(predictdata)
except Exception as e:
logger.error(f"推送数据失败: {e}")
def predict_main():
"""
主预测函数用于从 ETA 获取数据处理数据训练模型并进行预测
@ -116,31 +178,23 @@ def predict_main():
返回:
None
"""
global end_time
signature = BinanceAPI(APPID, SECRET)
etadata = EtaReader(signature=signature,
classifylisturl=classifylisturl,
classifyidlisturl=classifyidlisturl,
edbcodedataurl=edbcodedataurl,
edbcodelist=edbcodelist,
edbdatapushurl=edbdatapushurl,
edbdeleteurl=edbdeleteurl,
edbbusinessurl=edbbusinessurl
)
end_time = global_config['end_time']
# 获取数据
if is_eta:
logger.info('从eta获取数据...')
signature = BinanceAPI(APPID, SECRET)
etadata = EtaReader(signature=signature,
classifylisturl=classifylisturl,
classifyidlisturl=classifyidlisturl,
edbcodedataurl=edbcodedataurl,
edbcodelist=edbcodelist,
edbdatapushurl=edbdatapushurl,
edbdeleteurl=edbdeleteurl,
edbbusinessurl=edbbusinessurl,
classifylisturl=global_config['classifylisturl'],
classifyidlisturl=global_config['classifyidlisturl'],
edbcodedataurl=global_config['edbcodedataurl'],
edbcodelist=global_config['edbcodelist'],
edbdatapushurl=global_config['edbdatapushurl'],
edbdeleteurl=global_config['edbdeleteurl'],
edbbusinessurl=global_config['edbbusinessurl'],
classifyId=global_config['ClassifyId'],
)
df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_shiyoujiao_data(
df_zhibiaoshuju, df_zhibiaoliebiao = etadata.get_eta_api_shiyoujiao_lvyong_data(
data_set=data_set, dataset=dataset) # 原始数据,未处理
if is_market:
@ -158,20 +212,33 @@ def predict_main():
except:
logger.info('最高最低价拼接失败')
if len(global_config['baichuanidnamedict']) > 0:
logger.info('从市场数据库获取百川数据...')
baichuandf = get_baichuan_data(global_config['baichuanidnamedict'])
df_zhibiaoshuju = pd.merge(
df_zhibiaoshuju, baichuandf, on='date', how='outer')
# 指标列表添加百川数据
df_baichuanliebiao = pd.DataFrame(
global_config['baichuanidnamedict'].items(), columns=['指标id', '指标名称'])
df_baichuanliebiao['指标分类'] = '石油焦对标炼厂价格'
df_baichuanliebiao['频度'] = '其他'
df_zhibiaoliebiao = pd.concat(
[df_zhibiaoliebiao, df_baichuanliebiao], axis=0)
# 保存到xlsx文件的sheet表
with pd.ExcelWriter(os.path.join(dataset, data_set)) as file:
df_zhibiaoshuju.to_excel(file, sheet_name='指标数据', index=False)
df_zhibiaoliebiao.to_excel(file, sheet_name='指标列表', index=False)
# 数据处理
df = datachuli_juxiting(df_zhibiaoshuju, df_zhibiaoliebiao, y=y, dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture,
end_time=end_time)
df = datachuli(df_zhibiaoshuju, df_zhibiaoliebiao, y=global_config['y'], dataset=dataset, add_kdj=add_kdj, is_timefurture=is_timefurture,
end_time=end_time)
else:
# 读取数据
logger.info('读取本地数据:' + os.path.join(dataset, data_set))
df, df_zhibiaoliebiao = getdata_juxiting(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj,
is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理
df, df_zhibiaoliebiao = getdata(filename=os.path.join(dataset, data_set), y=y, dataset=dataset, add_kdj=add_kdj,
is_timefurture=is_timefurture, end_time=end_time) # 原始数据,未处理
# 更改预测列名称
df.rename(columns={y: 'y'}, inplace=True)
@ -193,7 +260,18 @@ def predict_main():
else:
for row in first_row.itertuples(index=False):
row_dict = row._asdict()
row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S')
config.logger.info(f'要保存的真实值:{row_dict}')
# 判断ds是否为字符串类型,如果不是则转换为字符串类型
if isinstance(row_dict['ds'], (pd.Timestamp, datetime.datetime)):
row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
elif not isinstance(row_dict['ds'], str):
try:
row_dict['ds'] = pd.to_datetime(
row_dict['ds']).strftime('%Y-%m-%d')
except:
logger.warning(f"无法解析的时间格式: {row_dict['ds']}")
# row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d')
# row_dict['ds'] = row_dict['ds'].strftime('%Y-%m-%d %H:%M:%S')
check_query = sqlitedb.select_data(
'trueandpredict', where_condition=f"ds = '{row.ds}'")
if len(check_query) > 0:
@ -230,7 +308,6 @@ def predict_main():
# except Exception as e:
# logger.info(f'更新accuracy表的y值失败{e}')
import datetime
# 判断当前日期是不是周一
is_weekday = datetime.datetime.now().weekday() == 0
if is_weekday:
@ -315,76 +392,64 @@ def predict_main():
row, col = df.shape
now = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
ex_Model_Juxiting(df,
horizon=horizon,
input_size=input_size,
train_steps=train_steps,
val_check_steps=val_check_steps,
early_stop_patience_steps=early_stop_patience_steps,
is_debug=is_debug,
dataset=dataset,
is_train=is_train,
is_fivemodels=is_fivemodels,
val_size=val_size,
test_size=test_size,
settings=settings,
now=now,
etadata=etadata,
modelsindex=modelsindex,
data=data,
is_eta=is_eta,
end_time=end_time,
)
ex_Model(df,
horizon=global_config['horizon'],
input_size=global_config['input_size'],
train_steps=global_config['train_steps'],
val_check_steps=global_config['val_check_steps'],
early_stop_patience_steps=global_config['early_stop_patience_steps'],
is_debug=global_config['is_debug'],
dataset=global_config['dataset'],
is_train=global_config['is_train'],
is_fivemodels=global_config['is_fivemodels'],
val_size=global_config['val_size'],
test_size=global_config['test_size'],
settings=global_config['settings'],
now=now,
etadata=global_config['etadata'],
modelsindex=global_config['modelsindex'],
data=data,
is_eta=global_config['is_eta'],
end_time=global_config['end_time'],
)
logger.info('模型训练完成')
logger.info('训练数据绘图ing')
model_results3 = model_losss_juxiting(sqlitedb)
model_results3 = model_losss(sqlitedb, end_time=end_time)
logger.info('训练数据绘图end')
# 模型报告
logger.info('制作报告ing')
title = f'{settings}--{end_time}-预测报告' # 报告标题
reportname = f'PP大模型预测报告--{end_time}.pdf' # 报告文件名
reportname = f'石油焦铝用大模型日度预测--{end_time}.pdf' # 报告文件名
reportname = reportname.replace(':', '-') # 替换冒号
pp_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time,
reportname=reportname, sqlitedb=sqlitedb),
shiyoujiao_lvyong_export_pdf(dataset=dataset, num_models=5 if is_fivemodels else 22, time=end_time,
reportname=reportname, sqlitedb=sqlitedb),
logger.info('制作报告end')
logger.info('模型训练完成')
# # LSTM 单变量模型
# ex_Lstm(df,input_seq_len=input_size,output_seq_len=horizon,is_debug=is_debug,dataset=dataset)
# # lstm 多变量模型
# ex_Lstm_M(df,n_days=input_size,out_days=horizon,is_debug=is_debug,datasetpath=dataset)
# # GRU 模型
# # ex_GRU(df)
push_market_value()
# 发送邮件
m = SendMail(
username=username,
passwd=passwd,
recv=recv,
title=title,
content=content,
file=max(glob.glob(os.path.join(dataset, '*.pdf')),
key=os.path.getctime),
ssl=ssl,
)
# m = SendMail(
# username=username,
# passwd=passwd,
# recv=recv,
# title=title,
# content=content,
# file=max(glob.glob(os.path.join(dataset,'*.pdf')), key=os.path.getctime),
# ssl=ssl,
# )
# m.send_mail()
if __name__ == '__main__':
# global end_time
# is_on = True
# # 遍历2024-11-25 到 2024-12-3 之间的工作日日期
# for i_time in pd.date_range('2025-1-20', '2025-2-6', freq='B'):
# for i_time in pd.date_range('2024-12-1', '2025-2-26', freq='W'):
# end_time = i_time.strftime('%Y-%m-%d')
# try:
# predict_main()
# except:
# pass
# predict_main()
predict_main()