PriceForecast/shiyoujiaolvyongdataset/model_evaluation.csv
2025-11-06 09:13:16 +08:00

737 B

1模型(Model)平均平方误差(MSE)均方根误差(RMSE)平均绝对误差(MAE)
2PatchTST847.89829.11921.041
3NLinear1036.99732.20224.318
4NHITS1224.8234.99725.062
5MLP1687.57641.0829.488
6TFT2289.52247.84933.59
7BiTCN3020.99254.96440.577
8Informer3532.01459.43146.436
9TiDE3700.65160.83344.453
10FEDformer4694.67568.51852.676
11TSMixer5285.0172.69855.318
12MLPMultivariate5635.6775.07157.694
13TSMixerx6758.1382.20862.804
14DeepNPTS7644.17287.43170.142
15DLinear8446.17891.90373.653
16GRU11533.363107.39395.255
17LSTM11540.298107.42692.262
18StemGNN14027.959118.4489.743
19iTransformer15670.617125.182100.969
20TCN19821.416140.789118.182
21DilatedRNN21523.955146.71126.693
22RNN109475.398330.871278.113